Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/30768
Τίτλος: Streaming Machine Learning for Supporting Data Prefetching in Modern Data Storage Systems
Συγγραφείς: Lucas Filho, Edson Ramiro 
Lun, Yang 
Kebo, Fu 
Herodotou, Herodotos 
Major Field of Science: Engineering and Technology
Field Category: ENGINEERING AND TECHNOLOGY;Electrical Engineering - Electronic Engineering - Information Engineering
Λέξεις-κλειδιά: caching policies;data prefetching;multi-tiered storage systems;streaming machine learning;tiering policies
Ημερομηνία Έκδοσης: 10-Αυγ-2023
Πηγή: 1st Workshop on AI for Systems, AI4Sys 2023, Orlando, Florida, 20 June 2023
Conference: AI4Sys 2023 - Proceedings of the 1st Workshop on AI for Systems 
Περίληψη: Modern data storage systems optimize data access by distributing data across multiple storage tiers and caches, based on numerous tiering and caching policies. The policies' decisions, and in particular the ones related to data prefetching, can severely impact the performance of the entire storage system. In recent years, various machine learning algorithms have been employed to model access patterns in complex data storage workloads. Even though data storage systems handle a constantly changing stream of file requests, current approaches continue to train their models offline in a batch-based approach. In this paper, we investigate the use of streaming machine learning to support data prefetching decisions in data storage systems as it introduces various advantages such as high training efficiency, high prediction accuracy, and high adaptability to changing workload patterns. After extracting a representative set of features in an online fashion, streaming machine learning models can be trained and tested while the system is running. To validate our methodology, we present one streaming classification model to predict the next file offset to be read in a file. We assess the model's performance using production traces provided by Huawei Technologies and demonstrate that streaming machine learning is a feasible approach with low memory consumption and minimal training delay, facilitating accurate predictions in real-time.
URI: https://hdl.handle.net/20.500.14279/30768
ISBN: 9798400701610
DOI: 10.1145/3588982.3603608
Rights: © ACM
Attribution-NonCommercial-NoDerivatives 4.0 International
Type: Conference Papers
Affiliation: Cyprus University of Technology 
Huawei Technologies Co. Ltd 
Εμφανίζεται στις συλλογές:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

Page view(s) 20

153
Last Week
5
Last month
5
checked on 23 Δεκ 2024

Google ScholarTM

Check

Altmetric


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons