Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/30761
Τίτλος: On the development of physiologically based toxicokinetic (PBTK) models for cardiovascular implants
Συγγραφείς: Giakoumi, Matheos 
Stephanou, Pavlos S. 
Kapnisis, Konstantinos 
Anayiotos, Andreas 
Major Field of Science: Engineering and Technology
Field Category: ENGINEERING AND TECHNOLOGY;Mechanical Engineering;Chemical Engineering
Λέξεις-κλειδιά: Monte Carlo uncertainty estimation;Multi-objective optimization;Nickel leaching;Physiologically based toxicokinetic (PBTK) models;Stents;Toxicological risk assessment
Ημερομηνία Έκδοσης: Οκτ-2023
Πηγή: Regulatory Toxicology and Pharmacology, 2023, vol. 144
Volume: 144
Περιοδικό: Regulatory toxicology and pharmacology : RTP 
Περίληψη: Local and systemic contamination caused by metal ions leaching from medical device materials is a significant and continuing health problem. The increasing need for verification and validation, and the imposition of stringent government regulations to ensure that the products comply with the quality, safety, and performance standards, have led regulatory bodies worldwide to strongly recommend the use of modeling and simulation tools to support medical device submissions. A previously published physiologically based toxicokinetic (PBTK) model, is here expanded and enriched by an additional separate tissue compartment to better resemble normal physiology and by the introduction of time-dependent functions to describe all biokinetic parameters. The new model is exercised in conjunction with state-of-the-art probabilistic, Monte Carlo methodology to calculate the predictions' confidence intervals and incorporate variability associated with toxicological biodistribution studies. The quantitative consistency of the model-derived predictions is validated against reported data following the implantation of nickel-containing cardiovascular devices in humans and minipigs. Finally, a new methodology for compartmental toxicological risk assessment is presented that can be used for forward or reverse dosimetry. Our work is aimed at providing a computational tool to optimize the device design characteristics and safeguard that the substances released do not exceed permissible exposure limits.
URI: https://hdl.handle.net/20.500.14279/30761
ISSN: 2732300
DOI: 10.1016/j.yrtph.2023.105489
Rights: © Elsevier
Attribution-NonCommercial-NoDerivatives 4.0 International
Type: Article
Affiliation: Cyprus University of Technology 
Εμφανίζεται στις συλλογές:Άρθρα/Articles

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

Page view(s)

120
Last Week
0
Last month
12
checked on 14 Μαϊ 2024

Google ScholarTM

Check

Altmetric


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons