Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/30722
DC FieldValueLanguage
dc.contributor.authorTziola, Anatoli A.-
dc.contributor.authorLoizou, Savvas-
dc.date.accessioned2023-10-31T10:48:19Z-
dc.date.available2023-10-31T10:48:19Z-
dc.date.issued2023-01-01-
dc.identifier.citation2023 IEEE International Conference on Robotics and Automation, ICRA 2023, London, United Kingdom, 29 May - 2 June 2023en_US
dc.identifier.isbn9798350323658-
dc.identifier.issn10504729-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/30722-
dc.description.abstractThis paper presents a solution to the automatic task planning problem for multi-agent systems. A formal frame-work is developed based on Nondeterministic Finite Automata with -transitions, where given the capabilities, constraints and failure modes of the agents involved, any initial state of the system and a task specification, an optimal solution is generated that satisfies the system constraints and the task specification. The resulting solution is guaranteed to be complete and optimal; moreover a heuristic solution that offers significant reduction of the computational requirements while relaxing the completeness and optimality requirements is proposed. The constructed system model is independent from the initial conditions and the task specifications, eliminating the need to repeat the costly pre-processing cycle, while allowing the incorporation of failure modes on-the-fly. A case study is provided to demonstrate the effectiveness and validity of the methodology.en_US
dc.language.isoenen_US
dc.rights© IEEEen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectAutonomous agentsen_US
dc.subjectOptimizationen_US
dc.subjectSpecificationsen_US
dc.titleAutonomous Task Planning for Heterogeneous Multi-Agent Systemsen_US
dc.typeConference Papersen_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryMechanical Engineeringen_US
dc.countryCyprusen_US
dc.subject.fieldEngineering and Technologyen_US
dc.relation.conferenceProceedings - IEEE International Conference on Robotics and Automationen_US
dc.identifier.doi10.1109/ICRA48891.2023.10161180en_US
dc.identifier.scopus2-s2.0-85168675120-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85168675120-
cut.common.academicyear2022-2023en_US
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.cerifentitytypePublications-
item.openairetypeconferenceObject-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0003-4083-9946-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation
CORE Recommender
Show simple item record

Page view(s) 50

168
Last Week
0
Last month
28
checked on Mar 14, 2025

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons