Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/30695
Τίτλος: Using Knowledge Graphs for Record Linkage: Challenges and Opportunities
Συγγραφείς: Andreou, Andreas S. 
Firmani, Donatella 
Mathew, Jerin George 
Mecella, Massimo 
Pingos, Michalis 
Major Field of Science: Engineering and Technology
Field Category: Electrical Engineering - Electronic Engineering - Information Engineering
Λέξεις-κλειδιά: Data handling;Domain Knowledge;Knowledge graph
Ημερομηνία Έκδοσης: 12-Ιου-2023
Πηγή: 1st International Workshop on Hybrid Artificial Intelligence and Enterprise Modelling for Intelligent Information Systems, HybridAIMS, 1st Workshop on Knowledge Graphs for Semantics-Driven Systems Engineering, KG4SDSE, Blockchain and Decentralized Governance Design for Information Systems, BC4IS and DGD, associated with the 35th International Conference on Advanced Information Systems Engineering, CAiSE 2023, Zaragoza, Spain, 12 - 16 June 2023
Volume: 482
Conference: 1st International Workshop on Hybrid Artificial Intelligence and Enterprise Modelling for Intelligent Information Systems 
Περίληψη: In this paper, we explore how Knowledge Graphs (KGs) can potentially benefit Record Linkage (RL). RL is the process of identifying and resolving duplicate records across different data sources, including structured, semi-structured, and unstructured data (e.g., in data lakes). RL is a critical task for information systems that rely on data to make decisions and is used in a wide variety of fields such as healthcare, finance, government and marketing. Due to recent advances in machine learning, there has been a significant progress in building automated RL methods. However, when dealing with vertical applications, featuring specialized domains such as a particular hospital or industry, human experts are still required to enter domain-specific knowledge, making RL prohibitively expensive. Despite KGs can be powerful tools to represent and derive domain-specific knowledge, their application to RL has been overlooked. Inspired by a healthcare case study in the Republic of Cyprus, we aim at filling this gap by identifying challenges and opportunities of using KGs to reduce the effort of solving RL in vertical applications.
URI: https://hdl.handle.net/20.500.14279/30695
ISBN: 9783031349843
ISSN: 18651348
DOI: 10.1007/978-3-031-34985-0_15
Rights: © The Author(s), under exclusive license to Springer Nature Switzerland AG
Attribution-NonCommercial-NoDerivatives 4.0 International
Type: Conference Papers
Affiliation: Cyprus University of Technology 
Universita Degli Studi Di Roma la Sapienza 
Εμφανίζεται στις συλλογές:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations 50

1
checked on 14 Μαρ 2024

Page view(s) 50

93
Last Week
0
Last month
9
checked on 17 Μαϊ 2024

Google ScholarTM

Check

Altmetric


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons