Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/30488
Τίτλος: A comparison of earthquake backprojection imaging methods for dense local arrays
Συγγραφείς: Beskardes, G. D. 
Hole, J. A. 
Wang, K. 
Michaelides, Michael 
Wu, Q. 
Chapman, M. C. 
Davenport, K. K. 
Brown, L. D. 
Quiros, D. A. 
Major Field of Science: Natural Sciences
Field Category: Earth and Related Environmental Sciences
Λέξεις-κλειδιά: Body waves;Earthquake source observations;Seismicity and tectonics;Dynamics and mechanics of faulting
Ημερομηνία Έκδοσης: Μαρ-2018
Πηγή: Geophysical Journal International, vol. 212, iss. 3, pp. 1986–2002, 2018
Volume: 212
Issue: 3
Περιοδικό: Geophysical Journal International 
Περίληψη: Backprojection imaging has recently become a practical method for local earthquake detection and location due to the deployment of densely sampled, continuously recorded, local seismograph arrays. While backprojection sometimes utilizes the full seismic waveform, the waveforms are often pre-processed and simplified to overcome imaging challenges. Real data issues include aliased station spacing, inadequate array aperture, inaccurate velocity model, low signal-to-noise ratio, large noise bursts and varying waveform polarity. We compare the performance of backprojection with four previously used data pre-processing methods: raw waveform, envelope, short-termaveraging/long-termaveraging and kurtosis. Our primary goal is to detect and locate events smaller than noise by stacking prior to detection to improve the signal-to-noise ratio. The objective is to identify an optimized strategy for automated imaging that is robust in the presence of real-data issues, has the lowest signal-to-noise thresholds for detection and for location, has the best spatial resolution of the source images, preserves magnitude, and considers computational cost. Imaging method performance is assessed using a real aftershock data set recorded by the dense AIDA array following the 2011 Virginia earthquake. Our comparisons show that raw-waveform backprojection provides the best spatial resolution, preserves magnitude and boosts signal to detect events smaller than noise, but is most sensitive to velocity error, polarity error and noise bursts. On the other hand, the other methods avoid polarity error and reduce sensitivity to velocity error, but sacrifice spatial resolution and cannot effectively reduce noise by stacking. Of these, only kurtosis is insensitive to large noise bursts while being as efficient as the raw-waveformmethod to lower the detection threshold; however, it does not preserve the magnitude information. For automatic detection and location of events in a large data set, we therefore recommend backprojecting kurtosis waveforms, followed by a second pass on the detected events using noise-filtered raw waveforms to achieve the best of all criteria.
URI: https://hdl.handle.net/20.500.14279/30488
ISSN: 0956540X
1365246X
DOI: 10.1093/gji/ggx520
Rights: © Oxford University Press
Type: Article
Affiliation: Virginia Tech 
Sandia National Laboratories 
Cornell University 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

22
checked on 14 Μαρ 2024

WEB OF SCIENCETM
Citations

21
checked on 1 Νοε 2023

Page view(s)

134
Last Week
1
Last month
2
checked on 30 Ιαν 2025

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα