Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/3033
Τίτλος: | The one-hidden layer non-parametric Bayesian kernel machine | Συγγραφείς: | Korkinof, Dimitrios Demiris, Yiannis Chatzis, Sotirios P. |
metadata.dc.contributor.other: | Χατζής, Σωτήριος Π. | Major Field of Science: | Engineering and Technology | Field Category: | Computer and Information Sciences | Λέξεις-κλειδιά: | Artificial intelligence;Communication, Networking & Broadcasting;Computing & Processing (Hardware/Software);Neurons;Benchmarking;Neural networks;Semantics | Ημερομηνία Έκδοσης: | 2011 | Πηγή: | 23rd IEEE international conference on tools with artificial intelligence (ICTAI), 2011, 7-9 November, pp. 825-831 | Conference: | IEEE international conference on tools with artificial intelligence (ICTAI) | Περίληψη: | In this paper, we present a nonparametric Bayesian approach towards one-hidden-layer feed forward neural networks. Our approach is based on a random selection of the weights of the synapses between the input and the hidden layer neurons, and a Bayesian marginalization over the weights of the connections between the hidden layer neurons and the output neurons, giving rise to a kernel-based nonparametric Bayesian inference procedure for feed forward neural networks. Compared to existing approaches, our method presents a number of advantages, with the most significant being: (i) it offers a significant improvement in terms of the obtained generalization capabilities, (ii) being a nonparametric Bayesian learning approach, it entails inference instead of fitting to data, thus resolving the over fitting issues of non-Bayesian approaches, and (iii) it yields a full predictive posterior distribution, thus naturally providing a measure of uncertainty on the generated predictions (expressed by means of the variance of the predictive distribution), without the need of applying computationally intensive methods, e.g., bootstrap. We exhibit the merits of our approach by investigating its application to two difficult multimedia content classification applications: semantic characterization of audio scenes based on content, and yearly song classification, as well as a set of benchmark classification and regression tasks | URI: | https://hdl.handle.net/20.500.14279/3033 | ISBN: | 978-1-4577-2068-0 (print) 978-0-7695-4596-7 (online) |
ISSN: | 1082-3409 (online) | DOI: | 10.1109/ICTAI.2011.129 | Rights: | © 2011 IEEE | Type: | Book Chapter | Affiliation: | Imperial College London Cyprus University of Technology |
Εμφανίζεται στις συλλογές: | Κεφάλαια βιβλίων/Book chapters |
CORE Recommender
SCOPUSTM
Citations
50
5
checked on 9 Νοε 2023
Page view(s) 50
426
Last Week
1
1
Last month
0
0
checked on 27 Νοε 2024
Google ScholarTM
Check
Altmetric
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα