Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/3033
Πεδίο DCΤιμήΓλώσσα
dc.contributor.authorKorkinof, Dimitrios-
dc.contributor.authorDemiris, Yiannis-
dc.contributor.authorChatzis, Sotirios P.-
dc.contributor.otherΧατζής, Σωτήριος Π.-
dc.date.accessioned2013-02-19T15:19:39Zen
dc.date.accessioned2013-05-17T05:33:47Z-
dc.date.accessioned2015-12-02T12:32:25Z-
dc.date.available2013-02-19T15:19:39Zen
dc.date.available2013-05-17T05:33:47Z-
dc.date.available2015-12-02T12:32:25Z-
dc.date.issued2011-
dc.identifier.citation23rd IEEE international conference on tools with artificial intelligence (ICTAI), 2011, 7-9 November, pp. 825-831en_US
dc.identifier.isbn978-1-4577-2068-0 (print)-
dc.identifier.isbn978-0-7695-4596-7 (online)-
dc.identifier.issn1082-3409 (online)-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/3033-
dc.description.abstractIn this paper, we present a nonparametric Bayesian approach towards one-hidden-layer feed forward neural networks. Our approach is based on a random selection of the weights of the synapses between the input and the hidden layer neurons, and a Bayesian marginalization over the weights of the connections between the hidden layer neurons and the output neurons, giving rise to a kernel-based nonparametric Bayesian inference procedure for feed forward neural networks. Compared to existing approaches, our method presents a number of advantages, with the most significant being: (i) it offers a significant improvement in terms of the obtained generalization capabilities, (ii) being a nonparametric Bayesian learning approach, it entails inference instead of fitting to data, thus resolving the over fitting issues of non-Bayesian approaches, and (iii) it yields a full predictive posterior distribution, thus naturally providing a measure of uncertainty on the generated predictions (expressed by means of the variance of the predictive distribution), without the need of applying computationally intensive methods, e.g., bootstrap. We exhibit the merits of our approach by investigating its application to two difficult multimedia content classification applications: semantic characterization of audio scenes based on content, and yearly song classification, as well as a set of benchmark classification and regression tasksen_US
dc.language.isoenen_US
dc.rights© 2011 IEEEen_US
dc.subjectArtificial intelligenceen_US
dc.subjectCommunication, Networking & Broadcastingen_US
dc.subjectComputing & Processing (Hardware/Software)en_US
dc.subjectNeuronsen_US
dc.subjectBenchmarkingen_US
dc.subjectNeural networksen_US
dc.subjectSemanticsen_US
dc.titleThe one-hidden layer non-parametric Bayesian kernel machineen_US
dc.typeBook Chapteren_US
dc.collaborationImperial College Londonen_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.countryUnited Kingdomen_US
dc.subject.fieldEngineering and Technologyen_US
dc.relation.conferenceIEEE international conference on tools with artificial intelligence (ICTAI)en_US
dc.identifier.doi10.1109/ICTAI.2011.129en_US
dc.dept.handle123456789/54en
cut.common.academicyear2019-2020en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_3248-
item.openairetypebookPart-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1en-
item.fulltextNo Fulltext-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-4956-4013-
crisitem.author.parentorgFaculty of Engineering and Technology-
Εμφανίζεται στις συλλογές:Κεφάλαια βιβλίων/Book chapters
CORE Recommender
Δείξε τη σύντομη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations 50

5
checked on 9 Νοε 2023

Page view(s) 50

426
Last Week
2
Last month
0
checked on 23 Νοε 2024

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα