Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/29886
Τίτλος: Exploring System and Machine Learning Performance Interactions when Tuning Distributed Data Stream Applications
Συγγραφείς: Odysseos, Lambros 
Herodotou, Herodotos 
Major Field of Science: Engineering and Technology
Field Category: Electrical Engineering - Electronic Engineering - Information Engineering
Λέξεις-κλειδιά: hyper-parameter tuning;machine learning;stream processing;system parameter tuning
Ημερομηνία Έκδοσης: 9-Μαΐ-2022
Πηγή: 38th IEEE International Conference on Data Engineering Workshops, ICDEW 2022Virtual, Kuala Lumpur, Malaysia, 9 - 11 May 2022
Start page: 24
End page: 29
Περιοδικό: Proceedings - 2022 IEEE 38th International Conference on Data Engineering Workshops, ICDEW 2022 
Περίληψη: Deploying machine learning (ML) applications over distributed stream processing engines (DSPEs) such as Apache Spark Streaming is a complex procedure that requires extensive tuning along two dimensions. First, DSPEs have a vast array of system configuration parameters (such as degree of parallelism, memory buffer sizes, etc.) that need to be optimized to achieve the desired levels of latency and/or throughput. Second, each ML model has its own set of hyper-parameters that need to be tuned as they significantly impact the overall prediction accuracy of the trained model. These two forms of tuning have been studied extensively in the literature but only in isolation from each other. This position paper identifies the necessity for a combined system and ML model tuning approach based on a thorough experimental study. In particular, experimental results have revealed unexpected and complex interactions between the choices of system configuration and hyper-parameters, and their impact on both application and model performance. These findings open up new research directions in the field of self-managing stream processing systems.
URI: https://hdl.handle.net/20.500.14279/29886
ISBN: 9781665481045
DOI: 10.1109/ICDEW55742.2022.00008
Rights: © Elsevier B.V.
Attribution-NonCommercial-NoDerivatives 4.0 International
Type: Conference Papers
Affiliation: Cyprus University of Technology 
Εμφανίζεται στις συλλογές:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

1
checked on 14 Μαρ 2024

Page view(s)

136
Last Week
0
Last month
5
checked on 6 Νοε 2024

Google ScholarTM

Check

Altmetric


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons