Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/29886
Τίτλος: | Exploring System and Machine Learning Performance Interactions when Tuning Distributed Data Stream Applications | Συγγραφείς: | Odysseos, Lambros Herodotou, Herodotos |
Major Field of Science: | Engineering and Technology | Field Category: | Electrical Engineering - Electronic Engineering - Information Engineering | Λέξεις-κλειδιά: | hyper-parameter tuning;machine learning;stream processing;system parameter tuning | Ημερομηνία Έκδοσης: | 9-Μαΐ-2022 | Πηγή: | 38th IEEE International Conference on Data Engineering Workshops, ICDEW 2022Virtual, Kuala Lumpur, Malaysia, 9 - 11 May 2022 | Start page: | 24 | End page: | 29 | Περιοδικό: | Proceedings - 2022 IEEE 38th International Conference on Data Engineering Workshops, ICDEW 2022 | Περίληψη: | Deploying machine learning (ML) applications over distributed stream processing engines (DSPEs) such as Apache Spark Streaming is a complex procedure that requires extensive tuning along two dimensions. First, DSPEs have a vast array of system configuration parameters (such as degree of parallelism, memory buffer sizes, etc.) that need to be optimized to achieve the desired levels of latency and/or throughput. Second, each ML model has its own set of hyper-parameters that need to be tuned as they significantly impact the overall prediction accuracy of the trained model. These two forms of tuning have been studied extensively in the literature but only in isolation from each other. This position paper identifies the necessity for a combined system and ML model tuning approach based on a thorough experimental study. In particular, experimental results have revealed unexpected and complex interactions between the choices of system configuration and hyper-parameters, and their impact on both application and model performance. These findings open up new research directions in the field of self-managing stream processing systems. | URI: | https://hdl.handle.net/20.500.14279/29886 | ISBN: | 9781665481045 | DOI: | 10.1109/ICDEW55742.2022.00008 | Rights: | © Elsevier B.V. Attribution-NonCommercial-NoDerivatives 4.0 International |
Type: | Conference Papers | Affiliation: | Cyprus University of Technology |
Εμφανίζεται στις συλλογές: | Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation |
CORE Recommender
SCOPUSTM
Citations
1
checked on 14 Μαρ 2024
Page view(s)
136
Last Week
0
0
Last month
5
5
checked on 6 Νοε 2024
Google ScholarTM
Check
Altmetric
Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons