Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/29663
Τίτλος: | The Holistic Perspective of the INCISIVE Project—Artificial Intelligence in Screening Mammography | Συγγραφείς: | Lazic, Ivan Agullo, Ferran Ausso, Susanna Alves, Bruno Barelle, Caroline Berral, Josep Ll Bizopoulos, Paschalis Bunduc, Oana Chouvarda, Ioanna Dominguez, Didier Filos, Dimitrios Gutierrez-Torre, Alberto Hesso, Iman Jakovljević, Nikša Kayyali, Reem Kogut-Czarkowska, Magdalena Kosvyra, Alexandra Lalas, Antonios Lavdaniti, Maria Loncar-Turukalo, Tatjana Martinez-Alabart, Sara Michas, Nassos Nabhani-Gebara, Shereen Raptopoulos, Andreas Roussakis, Yiannis Stalika, Evaggelia Symvoulidis, Chrysostomos Tsave, Olga Votis, Konstantinos Charalambous, Andreas |
Major Field of Science: | Medical and Health Sciences | Field Category: | MEDICAL AND HEALTH SCIENCES | Λέξεις-κλειδιά: | Medical images;Mammography;Artificial intelligence;Deep learning;Health data sharing | Ημερομηνία Έκδοσης: | 1-Σεπ-2022 | Πηγή: | Applied Sciences (Switzerland), 2022, vol. 12, no. 17, pp. 1-29 | Volume: | 12 | Issue: | 17 | Start page: | 1 | End page: | 29 | Περιοδικό: | Applied Sciences (Switzerland) | Περίληψη: | Finding new ways to cost-effectively facilitate population screening and improve cancer diagnoses at an early stage supported by data-driven AI models provides unprecedented opportunities to reduce cancer related mortality. This work presents the INCISIVE project initiative towards enhancing AI solutions for health imaging by unifying, harmonizing, and securely sharing scattered cancer-related data to ensure large datasets which are critically needed to develop and evaluate trustworthy AI models. The adopted solutions of the INCISIVE project have been outlined in terms of data collection, harmonization, data sharing, and federated data storage in compliance with legal, ethical, and FAIR principles. Experiences and examples feature breast cancer data integration and mammography collection, indicating the current progress, challenges, and future directions. | URI: | https://hdl.handle.net/20.500.14279/29663 | ISSN: | 20763417 | DOI: | 10.3390/app12178755 | Rights: | © by the authors | Type: | Article | Affiliation: | University of Novi Sad Barcelona Supercomputing Center Ministry of Health of Catalonia European Dynamics Centre for Research and Technology Hellas (CERTH) Telesto IoT Solutions Aristotle University of Thessaloniki Kingston University London Timelex BV/SRL International Hellenic University Hellenic Cancer Society European Dynamics German Oncology Center University of Piraeus Cyprus University of Technology |
Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
Αρχεία σε αυτό το τεκμήριο:
Αρχείο | Περιγραφή | Μέγεθος | Μορφότυπος | |
---|---|---|---|---|
applsci-12-08755-v2.pdf | 4.6 MB | Adobe PDF | Δείτε/ Ανοίξτε |
CORE Recommender
SCOPUSTM
Citations
5
checked on 14 Μαρ 2024
WEB OF SCIENCETM
Citations
3
Last Week
0
0
Last month
1
1
checked on 1 Νοε 2023
Page view(s)
159
Last Week
0
0
Last month
1
1
checked on 6 Νοε 2024
Download(s)
68
checked on 6 Νοε 2024
Google ScholarTM
Check
Altmetric
Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons