Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/29663
Title: The Holistic Perspective of the INCISIVE Project—Artificial Intelligence in Screening Mammography
Authors: Lazic, Ivan 
Agullo, Ferran 
Ausso, Susanna 
Alves, Bruno 
Barelle, Caroline 
Berral, Josep Ll 
Bizopoulos, Paschalis 
Bunduc, Oana 
Chouvarda, Ioanna 
Dominguez, Didier 
Filos, Dimitrios 
Gutierrez-Torre, Alberto 
Hesso, Iman 
Jakovljević, Nikša 
Kayyali, Reem 
Kogut-Czarkowska, Magdalena 
Kosvyra, Alexandra 
Lalas, Antonios 
Lavdaniti, Maria 
Loncar-Turukalo, Tatjana 
Martinez-Alabart, Sara 
Michas, Nassos 
Nabhani-Gebara, Shereen 
Raptopoulos, Andreas 
Roussakis, Yiannis 
Stalika, Evaggelia 
Symvoulidis, Chrysostomos 
Tsave, Olga 
Votis, Konstantinos 
Charalambous, Andreas 
Major Field of Science: Medical and Health Sciences
Field Category: MEDICAL AND HEALTH SCIENCES
Keywords: Medical images;Mammography;Artificial intelligence;Deep learning;Health data sharing
Issue Date: 1-Sep-2022
Source: Applied Sciences (Switzerland), 2022, vol. 12, no. 17, pp. 1-29
Volume: 12
Issue: 17
Start page: 1
End page: 29
Journal: Applied Sciences (Switzerland) 
Abstract: Finding new ways to cost-effectively facilitate population screening and improve cancer diagnoses at an early stage supported by data-driven AI models provides unprecedented opportunities to reduce cancer related mortality. This work presents the INCISIVE project initiative towards enhancing AI solutions for health imaging by unifying, harmonizing, and securely sharing scattered cancer-related data to ensure large datasets which are critically needed to develop and evaluate trustworthy AI models. The adopted solutions of the INCISIVE project have been outlined in terms of data collection, harmonization, data sharing, and federated data storage in compliance with legal, ethical, and FAIR principles. Experiences and examples feature breast cancer data integration and mammography collection, indicating the current progress, challenges, and future directions.
URI: https://hdl.handle.net/20.500.14279/29663
ISSN: 20763417
DOI: 10.3390/app12178755
Rights: © by the authors
Type: Article
Affiliation : University of Novi Sad 
Barcelona Supercomputing Center 
Ministry of Health of Catalonia 
European Dynamics 
Centre for Research and Technology Hellas (CERTH) 
Telesto IoT Solutions 
Aristotle University of Thessaloniki 
Kingston University London 
Timelex BV/SRL 
International Hellenic University 
Hellenic Cancer Society 
European Dynamics 
German Oncology Center 
University of Piraeus 
Cyprus University of Technology 
Publication Type: Peer Reviewed
Appears in Collections:Άρθρα/Articles

Files in This Item:
File Description SizeFormat
applsci-12-08755-v2.pdf4.6 MBAdobe PDFView/Open
CORE Recommender
Show full item record

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons