Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/28947
Τίτλος: | Maximum Correntropy Criterion Kalman Filter For Indoor Quadrotor Navigation Under Intermittent Measurements | Συγγραφείς: | Hadjiloizou, Loizos Makridis, Evagoras Charalambous, Themistoklis Deliparaschos, Kyriakos M. |
Major Field of Science: | Engineering and Technology | Field Category: | Electrical Engineering - Electronic Engineering - Information Engineering | Λέξεις-κλειδιά: | a Maximum Correntropy Criterion Kalman Filter;Multisensor fusion framework | Ημερομηνία Έκδοσης: | Ιου-2023 | Πηγή: | 31st Mediterranean Conference on Control and Automation, 26-29 June, Limassol, Cyprus | Conference: | Mediterranean Conference on Control & Automation (MED) | Περίληψη: | We present a multisensor fusion framework for the onboard real-time navigation of a quadrotor in an indoor environment. The framework integrates sensor readings from an Inertial Measurement Unit (IMU), a camera-based object detection algorithm, and an Ultra-WideBand (UWB) localisation system. Often the sensor readings are not always readily available, leading to inaccurate pose estimation and hence poor navigation performance. To effectively handle and fuse sensor readings, and accurately estimate the pose of the quadrotor for tracking a predefined trajectory, we design a Maximum Correntropy Criterion Kalman Filter (MCC-KF) that can manage intermittent observations. The MCC-KF is designed to improve the performance of the estimation process when is done with a Kalman Filter (KF), since KFs are likely to degrade dramatically in practical scenarios in which noise is non-Gaussian (especially when the noise is heavy-tailed). To evaluate the performance of the MCC-KF, we compare it with a previously designed Kalman filter by the authors. Through this comparison, we aim to demonstrate the effectiveness of the MCC-KF in handling indoor navigation missions. The simulation results show that our presented framework offers low positioning errors, while effectively handling intermittent sensor measurements. | URI: | https://hdl.handle.net/20.500.14279/28947 | Type: | Conference Papers | Affiliation: | Cyprus University of Technology KTH Royal Institute of Technology University of Cyprus |
Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation |
Αρχεία σε αυτό το τεκμήριο:
Αρχείο | Μέγεθος | Μορφότυπος | |
---|---|---|---|
2303.09561.pdf | 658.16 kB | Adobe PDF | Δείτε/ Ανοίξτε |
CORE Recommender
Page view(s) 50
183
Last Week
1
1
Last month
9
9
checked on 27 Νοε 2024
Download(s) 50
101
checked on 27 Νοε 2024
Google ScholarTM
Check
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα