Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/24578
Τίτλος: Estimating treatment effects on optimal row designs under dependence
Συγγραφείς: Pericleous, Katerina 
Major Field of Science: Social Sciences
Field Category: Mathematics
Λέξεις-κλειδιά: Optimal Experimental Designs
Ημερομηνία Έκδοσης: 20-Δεκ-2021
Πηγή: 14th International Conference of the ERCIM WG on Computational and Methodological Statistics, 2021, 18-20 December, London
Link: http://www.cmstatistics.org/CMStatistics2021/index.php
Conference: 14th International Conference of the ERCIM WG on Computational and Methodological Statistics 
Περίληψη: The experimental units or simply units are arranged in time or along a line with every unit to be allocated one out of v treatments. The aim is to find the design which gives optimal estimates of treatments effects or of treatment differences. The main effects model with homogeneous population, when the observations follow a first-order autoregressive process, with positive or negative parameter p, is used. Universal optimality and other optimality are defined and shown that for positive p, the Williams IIa designs, which are A- and D-optimal for estimating treatment contrasts, are not A- or E-optimal for estimating treatment effects. In order to estimate treatment effects a shortened Williams design is applied by considering the first or last unit as the right alternative. In the case of three treatments and negative dependence, optimal designs are presented for any number of units.
URI: https://hdl.handle.net/20.500.14279/24578
Rights: Attribution 4.0 International
Type: Conference Papers
Affiliation: King's College London 
Εμφανίζεται στις συλλογές:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation

Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΜέγεθοςΜορφότυπος
CFE-CMStatistics_2021_Pericleous_certificate.pdf123.73 kBAdobe PDFΔείτε/ Ανοίξτε
CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

Page view(s) 50

234
Last Week
1
Last month
4
checked on 30 Ιαν 2025

Download(s) 50

53
checked on 30 Ιαν 2025

Google ScholarTM

Check


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons