Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/24578
Τίτλος: | Estimating treatment effects on optimal row designs under dependence | Συγγραφείς: | Pericleous, Katerina | Major Field of Science: | Social Sciences | Field Category: | Mathematics | Λέξεις-κλειδιά: | Optimal Experimental Designs | Ημερομηνία Έκδοσης: | 20-Δεκ-2021 | Πηγή: | 14th International Conference of the ERCIM WG on Computational and Methodological Statistics, 2021, 18-20 December, London | Link: | http://www.cmstatistics.org/CMStatistics2021/index.php | Conference: | 14th International Conference of the ERCIM WG on Computational and Methodological Statistics | Περίληψη: | The experimental units or simply units are arranged in time or along a line with every unit to be allocated one out of v treatments. The aim is to find the design which gives optimal estimates of treatments effects or of treatment differences. The main effects model with homogeneous population, when the observations follow a first-order autoregressive process, with positive or negative parameter p, is used. Universal optimality and other optimality are defined and shown that for positive p, the Williams IIa designs, which are A- and D-optimal for estimating treatment contrasts, are not A- or E-optimal for estimating treatment effects. In order to estimate treatment effects a shortened Williams design is applied by considering the first or last unit as the right alternative. In the case of three treatments and negative dependence, optimal designs are presented for any number of units. | URI: | https://hdl.handle.net/20.500.14279/24578 | Rights: | Attribution 4.0 International | Type: | Conference Papers | Affiliation: | King's College London |
Εμφανίζεται στις συλλογές: | Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation |
Αρχεία σε αυτό το τεκμήριο:
Αρχείο | Περιγραφή | Μέγεθος | Μορφότυπος | |
---|---|---|---|---|
CFE-CMStatistics_2021_Pericleous_certificate.pdf | 123.73 kB | Adobe PDF | Δείτε/ Ανοίξτε |
CORE Recommender
Page view(s) 50
234
Last Week
1
1
Last month
4
4
checked on 30 Ιαν 2025
Download(s) 50
53
checked on 30 Ιαν 2025
Google ScholarTM
Check
Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons