Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/23203
Τίτλος: | k-core structure of real multiplex networks | Συγγραφείς: | Osat, Saeed Radicchi, Filippo Papadopoulos, Fragkiskos |
Major Field of Science: | Natural Sciences | Field Category: | Physical Sciences | Λέξεις-κλειδιά: | k-core;Real-world networks;Network hyperbolic embedding | Ημερομηνία Έκδοσης: | Ιου-2020 | Πηγή: | Physical Review Research, 2020, vol. 2, no. 2, articl. no. 023176 | Volume: | 2 | Issue: | 2 | Περιοδικό: | Physical Review Research | Περίληψη: | Multiplex networks are convenient mathematical representations for many real-world—biological, social, and technological—systems of interacting elements, where pairwise interactions among elements have different flavors. Previous studies pointed out that real-world multiplex networks display significant interlayer correlations—degree-degree correlation, edge overlap, node similarities—able to make them robust against random and targeted failures of their individual components. Here, we show that interlayer correlations are important also in the characterization of their k-core structure, namely, the organization in shells of nodes with an increasingly high degree. Understanding of k-core structures is important in the study of spreading processes taking place on networks, as for example in the identification of influential spreaders and the emergence of localization phenomena. We find that, if the degree distribution of the network is heterogeneous, then a strong k-core structure is well predicted by significantly positive degree-degree correlations. However, if the network degree distribution is homogeneous, then strong k-core structure is due to positive correlations at the level of node similarities. We reach our conclusions by analyzing different real-world multiplex networks, introducing novel techniques for controlling interlayer correlations of networks without changing their structure, and taking advantage of synthetic network models with tunable levels of interlayer correlations. | URI: | https://hdl.handle.net/20.500.14279/23203 | ISSN: | 26431564 | DOI: | 10.1103/PhysRevResearch.2.023176 | Rights: | © The Author(s). Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license | Type: | Article | Affiliation: | Skolkovo Institute of Science and Technology Cyprus University of Technology Indiana University Bloomington |
Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
Αρχεία σε αυτό το τεκμήριο:
Αρχείο | Περιγραφή | Μέγεθος | Μορφότυπος | |
---|---|---|---|---|
PhysRevResearch.2.023176.pdf | 2.36 MB | Adobe PDF | Δείτε/ Ανοίξτε | |
SM.pdf | Supplement | 15.19 MB | Adobe PDF | Δείτε/ Ανοίξτε |
CORE Recommender
SCOPUSTM
Citations
10
checked on 14 Μαρ 2024
WEB OF SCIENCETM
Citations
8
Last Week
0
0
Last month
0
0
checked on 30 Σεπ 2023
Page view(s)
382
Last Week
2
2
Last month
6
6
checked on 29 Ιαν 2025
Download(s) 20
240
checked on 29 Ιαν 2025
Google ScholarTM
Check
Altmetric
Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons