Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14279/2319
Title: | A vision-based system for automatic detection and extraction of road networks | Authors: | Poullis, Charalambos You, Suya Neumann, Ulrich |
Major Field of Science: | Natural Sciences | Field Category: | Computer and Information Sciences | Keywords: | Computer networks;Computer vision;Sensor networks | Issue Date: | 2008 | Source: | Applications of Computer Vision, 2008, Copper Mountain | Abstract: | In this paper we present a novel vision-based system for automatic detection and extraction of complex road networks from various sensor resources such as aerial photographs, satellite images, and LiDAR. Uniquely, the proposed system is an integrated solution that merges the power of perceptual grouping theory(gabor filtering, tensor voting) and optimized segmentation techniques(global optimization using graph-cuts) into a unified framework to address the challenging problems of geospatial feature detection and classification. Firstly, the local presicion of the gabor filters is combined with the global context of the tensor voting to produce accurate classification of the geospatial features. In addition, the tensorial representation used for the encoding of the data eliminates the need for any thresholds, therefore removing any data dependencies. Secondly, a novel orientation-based segmentation is presented which incorporates the classification of the perceptual grouping, and results in segmentations with better defined boundaries and continuous linear segments. Finally, a set of gaussian-based filters are applied to automatically extract centerline information (magnitude, width and orientation). This information is then used for creating road segments and then transforming them to their polygonal representations. | URI: | https://hdl.handle.net/20.500.14279/2319 | DOI: | 10.1109/WACV.2008.4543996 | Rights: | © IEEE | Type: | Conference Papers | Affiliation: | University of Southern California | Affiliation : | University of Southern California |
Appears in Collections: | Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation |
CORE Recommender
SCOPUSTM
Citations
20
10
checked on Nov 8, 2023
Page view(s) 20
500
Last Week
1
1
Last month
0
0
checked on Nov 21, 2024
Google ScholarTM
Check
Altmetric
Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.