Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/2319
Πεδίο DCΤιμήΓλώσσα
dc.contributor.authorPoullis, Charalambos-
dc.contributor.authorYou, Suya-
dc.contributor.authorNeumann, Ulrich-
dc.date.accessioned2013-02-15T14:20:37Zen
dc.date.accessioned2013-05-16T13:33:03Z-
dc.date.accessioned2015-12-02T11:17:59Z-
dc.date.available2013-02-15T14:20:37Zen
dc.date.available2013-05-16T13:33:03Z-
dc.date.available2015-12-02T11:17:59Z-
dc.date.issued2008-
dc.identifier.citationApplications of Computer Vision, 2008, Copper Mountainen_US
dc.identifier.urihttps://hdl.handle.net/20.500.14279/2319-
dc.description.abstractIn this paper we present a novel vision-based system for automatic detection and extraction of complex road networks from various sensor resources such as aerial photographs, satellite images, and LiDAR. Uniquely, the proposed system is an integrated solution that merges the power of perceptual grouping theory(gabor filtering, tensor voting) and optimized segmentation techniques(global optimization using graph-cuts) into a unified framework to address the challenging problems of geospatial feature detection and classification. Firstly, the local presicion of the gabor filters is combined with the global context of the tensor voting to produce accurate classification of the geospatial features. In addition, the tensorial representation used for the encoding of the data eliminates the need for any thresholds, therefore removing any data dependencies. Secondly, a novel orientation-based segmentation is presented which incorporates the classification of the perceptual grouping, and results in segmentations with better defined boundaries and continuous linear segments. Finally, a set of gaussian-based filters are applied to automatically extract centerline information (magnitude, width and orientation). This information is then used for creating road segments and then transforming them to their polygonal representations.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.rights© IEEEen_US
dc.subjectComputer networksen_US
dc.subjectComputer visionen_US
dc.subjectSensor networksen_US
dc.titleA vision-based system for automatic detection and extraction of road networksen_US
dc.typeConference Papersen_US
dc.affiliationUniversity of Southern Californiaen
dc.collaborationUniversity of Southern Californiaen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.countryUSAen_US
dc.subject.fieldNatural Sciencesen_US
dc.identifier.doi10.1109/WACV.2008.4543996en_US
dc.dept.handle123456789/54en
cut.common.academicyear2020-2021en_US
item.grantfulltextnone-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.openairetypeconferenceObject-
item.fulltextNo Fulltext-
crisitem.author.deptDepartment of Multimedia and Graphic Arts-
crisitem.author.facultyFaculty of Fine and Applied Arts-
crisitem.author.orcid0000-0001-5666-5026-
crisitem.author.parentorgFaculty of Fine and Applied Arts-
Εμφανίζεται στις συλλογές:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation
CORE Recommender
Δείξε τη σύντομη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations 20

10
checked on 8 Νοε 2023

Page view(s) 20

497
Last Week
0
Last month
0
checked on 7 Νοε 2024

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα