Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/2319
Πεδίο DC | Τιμή | Γλώσσα |
---|---|---|
dc.contributor.author | Poullis, Charalambos | - |
dc.contributor.author | You, Suya | - |
dc.contributor.author | Neumann, Ulrich | - |
dc.date.accessioned | 2013-02-15T14:20:37Z | en |
dc.date.accessioned | 2013-05-16T13:33:03Z | - |
dc.date.accessioned | 2015-12-02T11:17:59Z | - |
dc.date.available | 2013-02-15T14:20:37Z | en |
dc.date.available | 2013-05-16T13:33:03Z | - |
dc.date.available | 2015-12-02T11:17:59Z | - |
dc.date.issued | 2008 | - |
dc.identifier.citation | Applications of Computer Vision, 2008, Copper Mountain | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.14279/2319 | - |
dc.description.abstract | In this paper we present a novel vision-based system for automatic detection and extraction of complex road networks from various sensor resources such as aerial photographs, satellite images, and LiDAR. Uniquely, the proposed system is an integrated solution that merges the power of perceptual grouping theory(gabor filtering, tensor voting) and optimized segmentation techniques(global optimization using graph-cuts) into a unified framework to address the challenging problems of geospatial feature detection and classification. Firstly, the local presicion of the gabor filters is combined with the global context of the tensor voting to produce accurate classification of the geospatial features. In addition, the tensorial representation used for the encoding of the data eliminates the need for any thresholds, therefore removing any data dependencies. Secondly, a novel orientation-based segmentation is presented which incorporates the classification of the perceptual grouping, and results in segmentations with better defined boundaries and continuous linear segments. Finally, a set of gaussian-based filters are applied to automatically extract centerline information (magnitude, width and orientation). This information is then used for creating road segments and then transforming them to their polygonal representations. | en_US |
dc.format | en_US | |
dc.language.iso | en | en_US |
dc.rights | © IEEE | en_US |
dc.subject | Computer networks | en_US |
dc.subject | Computer vision | en_US |
dc.subject | Sensor networks | en_US |
dc.title | A vision-based system for automatic detection and extraction of road networks | en_US |
dc.type | Conference Papers | en_US |
dc.affiliation | University of Southern California | en |
dc.collaboration | University of Southern California | en_US |
dc.subject.category | Computer and Information Sciences | en_US |
dc.country | USA | en_US |
dc.subject.field | Natural Sciences | en_US |
dc.identifier.doi | 10.1109/WACV.2008.4543996 | en_US |
dc.dept.handle | 123456789/54 | en |
cut.common.academicyear | 2020-2021 | en_US |
item.grantfulltext | none | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_c94f | - |
item.openairetype | conferenceObject | - |
item.fulltext | No Fulltext | - |
crisitem.author.dept | Department of Multimedia and Graphic Arts | - |
crisitem.author.faculty | Faculty of Fine and Applied Arts | - |
crisitem.author.orcid | 0000-0001-5666-5026 | - |
crisitem.author.parentorg | Faculty of Fine and Applied Arts | - |
Εμφανίζεται στις συλλογές: | Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation |
CORE Recommender
SCOPUSTM
Citations
20
10
checked on 8 Νοε 2023
Page view(s) 20
497
Last Week
0
0
Last month
0
0
checked on 7 Νοε 2024
Google ScholarTM
Check
Altmetric
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα