Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/23142
Τίτλος: | A high granularity state-space method for contaminant detection and isolation in intelligent buildings | Συγγραφείς: | Kyriacou, Alexis Michaelides, Michalis P. Panayiotou, Christos G. Polycarpou, Marios M. |
Major Field of Science: | Engineering and Technology | Field Category: | Electrical Engineering - Electronic Engineering - Information Engineering | Λέξεις-κλειδιά: | 3D indoor environment;Coarse-grid CFD;Contaminant Detection;Contaminant Source Isolation;State-space method | Ημερομηνία Έκδοσης: | Νοε-2020 | Πηγή: | 16th Conference of the International Society of Indoor Air Quality and Climate, 2020, 1 November | Conference: | Conference of the International Society of Indoor Air Quality and Climate | Περίληψη: | Conservation of the Indoor Air Quality is essential in modern, energy efficient, intelligent buildings. However, accidents or malicious acts that often result in various airborne contaminant releases can endanger the occupants' wellbeing. In this work, an indoor air quality monitoring methodology is presented for detecting and localizing a contaminant source in the 3D indoor environment. Specifically, a state-space model is used to describe the contaminant dispersion in a zone which is discretised into multiple cuboid cells. The airflow exchange between the cells is computed based on a 3D discretized coarse-grid CFD analysis. A contaminant detection and localization methodology that considers modelling uncertainty and measurement noise, is adapted and applied to the CFD-based state-space model for detecting the existence of a possible contaminant source and estimating its location within the zone. The performance of the approach is illustrated through simulation examples. | URI: | https://hdl.handle.net/20.500.14279/23142 | ISBN: | 9781713823605 | Rights: | Attribution-NonCommercial-NoDerivatives 4.0 International | Type: | Conference Papers | Affiliation: | University of Cyprus Cyprus University of Technology |
Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation |
CORE Recommender
SCOPUSTM
Citations
50
1
checked on 6 Νοε 2023
Page view(s) 50
293
Last Week
0
0
Last month
2
2
checked on 29 Ιαν 2025
Google ScholarTM
Check
Altmetric
Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons