Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/23085
Τίτλος: Hyperbolic mapping of human proximity networks
Συγγραφείς: Flores, Marco Antonio Rodríguez 
Papadopoulos, Fragkiskos 
Major Field of Science: Natural Sciences
Field Category: Computer and Information Sciences
Λέξεις-κλειδιά: Time-aggregated network;Networks
Ημερομηνία Έκδοσης: Δεκ-2020
Πηγή: Scientific Reports, 2020, vol. 10, no. 1, articl. no. 20244
Volume: 10
Issue: 1
Περιοδικό: Scientific Reports 
Περίληψη: Human proximity networks are temporal networks representing the close-range proximity among humans in a physical space. They have been extensively studied in the past 15 years as they are critical for understanding the spreading of diseases and information among humans. Here we address the problem of mapping human proximity networks into hyperbolic spaces. Each snapshot of these networks is often very sparse, consisting of a small number of interacting (i.e., non-zero degree) nodes. Yet, we show that the time-aggregated representation of such systems over sufficiently large periods can be meaningfully embedded into the hyperbolic space, using methods developed for traditional (non-mobile) complex networks. We justify this compatibility theoretically and validate it experimentally. We produce hyperbolic maps of six different real systems, and show that the maps can be used to identify communities, facilitate efficient greedy routing on the temporal network, and predict future links with significant precision. Further, we show that epidemic arrival times are positively correlated with the hyperbolic distance from the infection sources in the maps. Thus, hyperbolic embedding could also provide a new perspective for understanding and predicting the behavior of epidemic spreading in human proximity systems.
URI: https://hdl.handle.net/20.500.14279/23085
ISSN: 20452322
DOI: 10.1038/s41598-020-77277-7
Rights: ©The Author(s). Tis article is licensed under a Creative Commons Attribution 4.0 International License.
Attribution-NonCommercial-NoDerivatives 4.0 International
Type: Article
Affiliation: Cyprus University of Technology 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΜέγεθοςΜορφότυπος
s41598-020-77277-7.pdfFulltex2.49 MBAdobe PDFΔείτε/ Ανοίξτε
CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

2
checked on 2 Φεβ 2024

WEB OF SCIENCETM
Citations

2
Last Week
0
Last month
0
checked on 29 Οκτ 2023

Page view(s)

320
Last Week
4
Last month
31
checked on 14 Μαρ 2025

Download(s)

194
checked on 14 Μαρ 2025

Google ScholarTM

Check

Altmetric


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons