Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/23053
DC FieldValueLanguage
dc.contributor.authorDaskalakis, Ioannis-
dc.contributor.authorVamvasakis, Ioannis-
dc.contributor.authorPapadas, Ioannis T.-
dc.contributor.authorTsatsos, Sotirios-
dc.contributor.authorChoulis, Stelios A.-
dc.contributor.authorKennou, Stella-
dc.contributor.authorArmatas, Gerasimos S.-
dc.date.accessioned2021-09-15T12:14:22Z-
dc.date.available2021-09-15T12:14:22Z-
dc.date.issued2020-12-07-
dc.identifier.citationInorganic Chemistry Frontiers, 2020, vol. 7, no. 23, pp. 4687 - 4700en_US
dc.identifier.issn20521553-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/23053-
dc.description.abstractTransition metal sulfides have been emerging as one of the most attractive and prospective catalysts for the direct conversion of solar energy into chemical fuels. Their intriguing compositional and electronic characteristics and their feasibility for integration in porous architectures endow metal sulfide materials with superior activity for photochemical catalysis. In the present work, high-surface-area Cu-doped ZnS nanocrystal (NC)-linked mesoporous frameworks are successfully synthesized for use as cost-effective catalysts for photochemical hydrogen evolution. Benefiting from the suitable band-edge alignment and enhanced visible light absorption resulting from the interfacial charge transfer between ZnS and Cu2S NCs, there is a spatial separation of charge carriers which leads to excellent activity for photocatalytic hydrogen production. Moreover, the results obtained here show that surface defect passivation through a wet-chemical sulfidation process effectively increases the photochemical performance of the composite catalysts by improving the transport efficiency of electrons at the Cu2S/ZnS interface and changing the Helmholtz layer potential drop at the ZnS/Cu2S/electrolyte junction. Thus, a remarkable improvement of 1 mmol h-1 gcat-1 for hydrogen evolution is observed with the sulfide-treated Cu2S/ZnS catalyst containing 5 mol% Cu, which is associated with a 17.6% apparent quantum yield under 410 nm irradiation. This work provides an interesting strategy for enhancing the interface charge transfer properties and hydrogen evolution activity of metal sulfides by surface defect engineering with sulfide ions.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofInorganic Chemistry Frontiersen_US
dc.rightsThis article is licensed under a Creative Commons Attribution-NonCommercial.en_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectHigh-surface-area mesoporous networksen_US
dc.subjectPhotocatalystsen_US
dc.titleSurface defect engineering of mesoporous Cu/ZnS nanocrystal-linked networks for improved visible-light photocatalytic hydrogen productionen_US
dc.typeArticleen_US
dc.collaborationUniversity of Creteen_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationUniversity of Patrasen_US
dc.subject.categoryChemical Sciencesen_US
dc.journalsOpen Accessen_US
dc.countryGreeceen_US
dc.countryCyprusen_US
dc.subject.fieldNatural Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1039/d0qi01013hen_US
dc.identifier.scopus2-s2.0-85097187832-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85097187832-
dc.relation.issue23en_US
dc.relation.volume7en_US
cut.common.academicyear2020-2021en_US
dc.identifier.spage4687en_US
dc.identifier.epage4700en_US
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.languageiso639-1en-
crisitem.journal.journalissn2052-1553-
crisitem.journal.publisherRoyal Society of Chemistry-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-7899-6296-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
Files in This Item:
File Description SizeFormat
d0qi01013h.pdfFulltext3.19 MBAdobe PDFView/Open
d0qi01013h1.pdfSupplement580.59 kBAdobe PDFView/Open
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

8
checked on Mar 14, 2024

WEB OF SCIENCETM
Citations

6
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s)

231
Last Week
1
Last month
11
checked on May 12, 2024

Download(s)

158
checked on May 12, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons