Electronic Supplementary Information

Surface Defect Engineering of Mesoporous Cu/ZnS Nanocrystal-Linked Networks for Improved Visible-Light Photocatalytic Hydrogen Production

Ioannis Daskalakis,^a Ioannis Vamvasakis,^a Ioannis T. Papadas,^b Sotirios Tsatsos,^c Stelios A. Choulis,^b Stella Kennou^c and Gerasimos S. Armatas*^a

^aDepartment of Materials Science and Technology, University of Crete, Heraklion 71003, Greece. E-mail: garmatas@materials.uoc.gr ^bMolecular Electronics and Photonics Research Unit, Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Limassol 3041, Cyprus. ^cDepartment of Chemical Engineering, University of Patras, Patra 26504, Greece.

*E-mail: garmatas@materials.uoc.gr

Supporting Tables

Sample	Atomic ratio Zn:S:Cu	Cu dopingª (mol%)	Chemical formula	
ZS	51.2:48.8	0	ZnS	
CZS-2	50.8:45.8:1.3	2.5	Zn _{0.98} Cu _{0.02} S	
CZS-5	49.7:45.2:2.7	5.2	Zn _{0.95} Cu _{0.05} S	
CZS-10	49.2:45.1:5.7	10.4	Zn _{0.90} Cu _{0.10} S	
CZS'-5 ^b	49.9:45.8:2.6	5.0	Zn _{0.95} Cu _{0.05} S'	
CZS'-5_AC°	49.1:48.3:2.6	5.1	Zn _{0.95} Cu _{0.05} S'	

Table S1. EDS results and chemical formulas of the mesoporous ZS, CZS and CZS'-5 NCAs.

^aBased on EDS analysis. ^bSulfurated CZS-5 sample. ^cCZS'-5 sample retrieved after photocatalytic reactions.

Sample	R _s (Ω)	Q _f (F)	L _{ad} (H)	R _{ct} (Ω)	Q₅ (F)	X²
ZS	1.34	11.6 ×10 ⁻⁹	75.0 ×10 ⁻⁶	100.5	11.7 ×10⁻ ⁶	3.2 ×10 ⁻⁴
CZS-2	1.33	11.6 ×10 ⁻⁹	77.6 ×10 ⁻⁶	102.6	9.2 ×10 ⁻⁶	4.5 ×10 ⁻⁴
CZS-5	1.38	11.6 ×10 ⁻⁹	78.3 ×10 ⁻⁶	102.9	12.3 ×10 ⁻⁶	2.6 ×10 ⁻³
CZS-10	1.28	11.3 ×10 ⁻⁹	78.3 ×10 ⁻⁶	105.4	7.0 ×10 ⁻⁶	5.6 ×10 ⁻⁴
CZS'-5	1.36	11.4 ×10 ⁻⁹	64.1 ×10 ⁻⁶	95.6	13.37 ×10 ⁻⁶	2.9 ×10 ⁻³

Table S2. EIS equivalent circuit fitted parameters for ZS, CZS and CZS'-5 NCAs catalysts.

Supporting Figures

Fig. S1 N_2 adsorption and desorption isotherms at -196 °C and (inset) the corresponding pore-size distribution plot for the mesoporous CZS'-5 catalyst.

Fig. S2 Time courses for photocatalytic H₂ production for different loadings of the CZS-5 catalyst. The photocatalytic reactions were performed by suspending the catalyst in 20 mL of water containing 0.25 M Na₂SO₃ and 0.35 M Na₂S, under $\lambda \ge 420$ nm light irradiation.

Fig. S3 Photocatalytic H₂ evolution rates for CZS-5 catalyst using different sacrificial electron donors. The photocatalytic reactions were performed by suspending 20 mg of catalyst in 20 mL of water containing the sacrificial agent, under $\lambda \ge 420$ nm light irradiation. Sacrificial electron donors: 0.35M Na₂S/0.25M Na₂SO₃, 10% (v/v) ethanol, 10% (v/v) methanol, 10% (v/v) ethanol/5M NaOH.

Fig. S4 Time courses for photocatalytic H₂ production for different sulfide-treated Cu/ZnS catalysts. The H₂-prodyction activity of the CZS-5 is also given for comparison. The photocatalytic reactions were performed by suspending 20 mg of catalyst in 20 mL of water containing 0.25 M Na₂SO₃ and 0.35 M Na₂S, under $\lambda \ge 420$ nm light irradiation.

Fig. S5 (a) N₂ adsorption-desorption isotherm and (b, c) TEM images of mesoporous CZS'-5 NCAs retrieved after photocatalytic recycle tests. The TEM images reveal that the reused CZS'-5 catalyst preserves a porous network structure of interconnected, highly crystalline, nanoparticles.

Fig. S6 (a) XRD pattern and (b-e) XPS spectra of the Zn 2p (b), Zn $L_3M_{45}M_{45}$ Auger (c), Cu 2p (d) and S 2p core-level (e) lines for the mesoporous CZS'-5 sample after photocatalytic recycle tests. The Auger parameter value at 2011.1 ±0.2 eV indicates that the dominant phase is ZnS. The absence of "shake-up" satellite peak in the Cu 2p spectrum suggests that the Cu species in the sample are Cu₂S.

Fig. S7 Room-temperature PL emission spectra of the mesoporous ZS, CZS-5 and CZS'-5 catalysts. PL experiments were carried out in water (0.5 mg mL⁻¹) with 330 nm excitation wavelength.