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Supporting Tables

Table S1. EDS results and chemical formulas of the mesoporous ZS, CZS and CZS′-5 NCAs. 

Sample Atomic ratio
Zn:S:Cu

Cu dopinga

(mol%) Chemical formula

ZS 51.2:48.8 0 ZnS

CZS-2 50.8:45.8:1.3 2.5 Zn0.98Cu0.02S

CZS-5 49.7:45.2:2.7 5.2 Zn0.95Cu0.05S

CZS-10 49.2:45.1:5.7 10.4 Zn0.90Cu0.10S

CZS′-5b 49.9:45.8:2.6 5.0 Zn0.95Cu0.05S′

CZS′-5_ACc 49.1:48.3:2.6 5.1 Zn0.95Cu0.05S′
aBased on EDS analysis. bSulfurated CZS-5 sample. cCZS′-5 sample retrieved after 
photocatalytic reactions.

Table S2. EIS equivalent circuit fitted parameters for ZS, CZS and CZS′-5 NCAs catalysts.

Sample Rs

(Ω)
Qf

(F)
Lad

(H)
Rct

(Ω)
Qs

(F) x2

ZS 1.34 11.6 10-9 75.0 10-6 100.5 11.7 10-6 3.2 10-4

CZS-2 1.33 11.6 10-9 77.6 10-6 102.6 9.2 10-6 4.5 10-4

CZS-5 1.38 11.6 10-9 78.3 10-6 102.9 12.3 10-6 2.6 10-3

CZS-10 1.28 11.3 10-9 78.3 10-6 105.4 7.0 10-6 5.6 10-4

CZS′-5 1.36 11.4 10-9 64.1 10-6 95.6 13.37 10-6 2.9 10-3
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Supporting Figures

Fig. S1 N2 adsorption and desorption isotherms at –196 oC and (inset) the corresponding 
pore-size distribution plot for the mesoporous CZS′-5 catalyst.

Fig. S2 Time courses for photocatalytic H2 production for different loadings of the CZS-5 
catalyst. The photocatalytic reactions were performed by suspending the catalyst in 20 mL of 
water containing 0.25 M Na2SO3 and 0.35 M Na2S, under λ ≥ 420 nm light irradiation.
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Fig. S3 Photocatalytic H2 evolution rates for CZS-5 catalyst using different sacrificial electron 
donors. The photocatalytic reactions were performed by suspending 20 mg of catalyst in 20 
mL of water containing the sacrificial agent, under λ ≥ 420 nm light irradiation. Sacrificial 
electron donors: 0.35M Na2S/0.25M Na2SO3, 10% (v/v) ethanol, 10% (v/v) methanol, 10% 
(v/v) ethanol/5M NaOH.

Fig. S4 Time courses for photocatalytic H2 production for different sulfide-treated Cu/ZnS 
catalysts. The H2-prodyction activity of the CZS-5 is also given for comparison. The 
photocatalytic reactions were performed by suspending 20 mg of catalyst in 20 mL of water 
containing 0.25 M Na2SO3 and 0.35 M Na2S, under λ ≥ 420 nm light irradiation.
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Fig. S5 (a) N2 adsorption-desorption isotherm and (b, c) TEM images of mesoporous CZS′-5 
NCAs retrieved after photocatalytic recycle tests. The TEM images reveal that the reused 
CZS′-5 catalyst preserves a porous network structure of interconnected, highly crystalline, 
nanoparticles.

Fig. S6 (a) XRD pattern and (b-e) XPS spectra of the Zn 2p (b), Zn L3M45M45 Auger (c), Cu 2p 
(d) and S 2p core-level (e) lines for the mesoporous CZS′-5 sample after photocatalytic recycle 
tests. The Auger parameter value at 2011.1 ±0.2 eV indicates that the dominant phase is ZnS. 
The absence of “shake-up” satellite peak in the Cu 2p spectrum suggests that the Cu species 
in the sample are Cu2S.
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Fig. S7 Room-temperature PL emission spectra of the mesoporous ZS, CZS-5 and CZS′-5 
catalysts. PL experiments were carried out in water (0.5 mg mL-1) with 330 nm excitation 
wavelength.
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