Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/23035
DC FieldValueLanguage
dc.contributor.authorVöllmecke, Christina-
dc.contributor.authorTodt, Melanie-
dc.contributor.authorYiatros, Stylianos-
dc.date.accessioned2021-09-14T05:06:21Z-
dc.date.available2021-09-14T05:06:21Z-
dc.date.issued2021-
dc.identifier.citationComposites and Advanced Materials, 2021, vol. 30, pp. 1-12en_US
dc.identifier.issn26349833-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/23035-
dc.description.abstractRecent advances in manufacturing and material science have given rise to numerous architectured materials (archimats), which are tailored for multifunctionality and improved performance. Specifically, lattice structures and metal foams are usually lightweight optimized structural morphologies, which are prone to non-linear instability phenomena, leading to collapse or to a different stable state. This article offers an extensive review of analytical, numerical and experimental methods for investigating buckling and postbuckling in such materials. In terms of analytical modelling, linear elastic and geometrically non-linear models are presented. In numerical analysis, discrete and continuum models are presented, highlighting how numerical modelling can inform design of such materials and finally, experimental methods across different scales are reported, highlighting their merits, depending on the aim of the investigation.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofComposites and Advanced Materialsen_US
dc.rights© The Author(s). This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License.en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectArchitectured materialsen_US
dc.subjectBucklingen_US
dc.subjectPostbucklingen_US
dc.subjectAnalytical modelen_US
dc.subjectFinite element methoden_US
dc.subjectExperimentsen_US
dc.titleBuckling and postbuckling of architectured materials: A review of methods for lattice structures and metal foamsen_US
dc.typeArticleen_US
dc.collaborationTechnical University Berlinen_US
dc.collaborationTechnische Universitat Wienen_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryCivil Engineeringen_US
dc.journalsOpen Accessen_US
dc.countryGermanyen_US
dc.countryAustriaen_US
dc.countryCyprusen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1177/26349833211003904en_US
dc.relation.volume30en_US
cut.common.academicyear2020-2021en_US
dc.identifier.spage1en_US
dc.identifier.epage12en_US
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.openairetypearticle-
crisitem.author.deptDepartment of Civil Engineering and Geomatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-4803-6585-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
Files in This Item:
File Description SizeFormat
26349833211003904.pdfFulltext364.63 kBAdobe PDFView/Open
CORE Recommender
Show simple item record

WEB OF SCIENCETM
Citations

5
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s)

318
Last Week
3
Last month
31
checked on Mar 14, 2025

Download(s)

212
checked on Mar 14, 2025

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons