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materials: A review of methods for lattice
structures and metal foams
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Abstract
Recent advances in manufacturing and material science have given rise to numerous architectured materials (archimats),
which are tailored for multifunctionality and improved performance. Specifically, lattice structures and metal foams are
usually lightweight optimized structural morphologies, which are prone to non-linear instability phenomena, leading to
collapse or to a different stable state. This article offers an extensive review of analytical, numerical and experimental
methods for investigating buckling and postbuckling in such materials. In terms of analytical modelling, linear elastic and
geometrically non-linear models are presented. In numerical analysis, discrete and continuum models are presented,
highlighting how numerical modelling can inform design of such materials and finally, experimental methods across dif-
ferent scales are reported, highlighting their merits, depending on the aim of the investigation.
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Introduction

Over the past decades, architectured materials (archimats)

(please note that other terms are proposed in the literature,

such as hybrid materials, metamaterials, multimaterials

and tailored materials) have been making their way into

material science and engineering. Archimats comprise

both material combination and structural configuration

and are thus dependent on the observation scale. Hence,

an archimat combines several non-miscible materials (or

one material and air) in a predefined arrangement such

that a representative volume element (RVE) comprises

at least one dimension that is very small in comparison

with the overall dimensions of the part it composes. This

includes, for example, composites, sandwiches, foams, lat-

tices, etc.1 Lattice materials, for example, are cellular mate-

rials with an open and periodic internal structure and have

remarkable potential owing to their multifunctionality.2,3

The periodicity of lattice materials ensures that their glo-

bal material properties mainly depend on the internal

architecture. Hence, the overall properties of lattice mate-

rials can be tailored towards the requirements of specific

applications by designing the lattice structure accordingly.

Thus, during the development and tailoring of an archimat,

the underlying question on the extent of the combination of

the strategies of microstructural and architectural design

arises.

This aspect becomes more relevant since advanced man-

ufacturing technologies such as additive manufacturing

(AM) allow to produce highly complex and even hybrid

lattice structures in customized mass production.4–6 With

the advent of AM technologies, the development of tailored

materials has experienced a significant boost. A desired

structure can now easily be built in three dimensions
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(3D) owing to the precise deposition of printable materi-

al(s) with microscale accuracy.1,7

In lightweight constructions, archimats are used due to

their extremely high strength-to-density ratio. The rising

demand for energy-saving and, consequently, lighter

construction has led to the manufacture of very slender

lattice structures. Slender structures are highly prone to loss

of structural stability when experiencing compressive stress

states. Hence, their compressive strength is not governed

by the strut material but by the buckling load of the lattice

itself.8,9 Experimental work shows that, for example,

square lattice materials possess far higher compressive

strengths than other lattice structures with comparable

relative densities.9–12

The design of lattice materials previously focussed on

the perfect state, that is, imperfection-free geometry and

homogeneous base materials to understand the underlying

deformation mechanisms (see refs.13–16). Yet, even small

perturbations, for example, due to local manufacturing dis-

crepancies, may result in dramatic changes in the overall

structural response of an archimat and may potentially jeo-

pardize its functionality. Thus researchers are currently

accounting for imperfections via robust design architec-

tures that minimize the impact of imperfections on the

effective overall properties and, ultimately, component per-

formance.17,18 So despite the fact that buckling is a phe-

nomenon that has been known for centuries, it is still

commonly avoided in engineering design.

However, in 2010, Crosby already emphasized the poten-

tial of buckling and the deeper understanding of the (post)-

buckling mechanisms.19 Most recently, structural stability

analysis has indeed experienced a research revival. Buckling

phenomena are no longer viewed as sources of catastrophic

failure but rather as novel opportunities for functionality and

design as is manifested in many smart applications surround-

ing us, for example, sensors, switches and deployable struc-

tures,. Thus renewed interest is sparked.20,21 For a

comprehensive review on how microstructural instabilities

can be exploited in archimats, the reader is referred to the

article of Kochmann and Bertoldi.22

Lattice materials, as an example for an archimat, can be

considered as special cases of open-cell foams with a dis-

tinct periodic structure. Hence, modelling strategies devel-

oped for open-cell foams can be directly applied. These

modelling strategies can be categorized into analytical and

computational methods. In addition, experimental investi-

gations are mainly undertaken to gain further knowledge on

the underlying mechanisms.

Analytical modelling

Herein, analytical methods comprise all methods where the

problem can be stated analytically, no matter whether a

closed-form solution is subsequently found or the govern-

ing equations are solved with the aid of numerical tools.

Initially, linear elastic modelling approaches are presented

and their limitations are discussed. Subsequently, geome-

trically non-linear modelling is presented with its specific

application on lattice materials being demonstrated.

Linear elastic modelling

Analytical methods are often based on linear elastic beam

theory and have been applied to study various aspects of

open-cell foams/lattice materials in a global or homoge-

nized manner.23,24 In ref.,23 relations between the elastic

modulus and the relative density in the form of a power law

are derived. For the overall homogenized elastic modulus
�E, the relation �E � Erm is found, where E denotes the

elastic modulus of the strut material and r is the relative

density. The parameter m accounts for the deformation

mechanism active in the lattice material with respect to the

loading condition and is m ¼ 1 for stretch dominated and

m ¼ 3 for bending dominated lattices. Beam models (see

Figure 1) are also used in ref.24 to investigate the mechan-

ical behaviour of honeycomb structures, where relations for

Figure 1. A hypothetical beam model to describe hexagonal lattice struts buckling under compressive load in the vertical direction.
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the compressive collapse and fracture toughness are

derived. Similar concepts are used in ref.25

In this review, the focus lies on the mechanical beha-

viour of archimats under compressive loading. With

respect to this loading scenario, analytical approaches are

limited to the evaluation of the critical behaviour, that is,

the maximum peak compressive stress spk.10,24,25 In ref.10,

the buckling stress spk for global elastic buckling of the

lattice material is determined as follows:

spk ¼ s0pk þ G with s0pk ¼
p2Es

2

a

H

� �2

r ð1Þ

The peak stress s0pk is the buckling stress of the struts

without the influence of the horizontal bars and depends

linearly on the relative density r. The parameter G denotes

the overall shear modulus of the lattice material. Similar

equations exist for other lattice materials, see, for

example.9,25 Such formulations are insufficient for two rea-

sons. First, calculating the compressive peak buckling

stress offers no insight into the global postbuckling mate-

rial response. Second, this approach has served, up to now,

only to supplement experimental work. For efficient design

and tailoring of the material behaviour, it is, however, nec-

essary to estimate their mechanical behaviour without

experimental work.

Thus, geometrically non-linear analytical models are

required.

Geometrically non-linear modelling

Geometrically non-linear modelling is necessary to explore

the behaviour of structures beyond their critical buckling

load. The analytical procedure reviewed herein is the

method of minimizing the total potential energy in the form

described by Thompson and Hunt.26 The aim of this con-

venient procedure is to describe the deformation behaviour

of the system under the influence of load with only very

few generalized coordinates or so-called degrees of free-

dom, qi. The total potential energy V consists of the strain

energy U of the system and the work of the external load P

along the end-shortening E:

Vðqi;PÞ ¼ UðqiÞ � PEðqiÞ ð2Þ

Once this formulation is determined for a certain struc-

ture, the stability of the system can be readily investigated.

The relationship of the load P versus the displacement and

hence the generalized coordinates qi results from the equi-

librium path of the system derived by the total derivative of

V with respect to the generalized coordinates, thus:

dV

dqi

¼! 0 ð3Þ

The methodology allows for a large deflection formula-

tion and the assessment of both semi-continuous and fully

discretized geometric models while parameters can be

varied systematically and imperfection studies can be

conducted.

The above methodology has recently been successfully

employed to model fibre-stayed, collinear lattice struc-

tures27 while experimental and numerical investigations

confirmed the results.28,29 Its potential for further investi-

gations on archimats has been accredited in ref.30 The

framework is particularly advantageous when so-called

modal nudges, which are small, deliberate geometric altera-

tions to the structure that were previously determined via

information derived by the postbuckled configuration of

the baseline idealized structure,31 are to be introduced.

By employing these nudges, the postbuckling behaviour

of a structure can be altered significantly. That means that

through these deliberate alterations, favourable, that is, sta-

ble, postbuckling paths can be enforced, yielding predict-

able and potentially exploitable responses in a structural

context.

Digital fabrication and rapid prototyping (commonly

known as 3D printing) techniques are currently flourishing.

They are thus furthering the development of archimats

using this framework since they add powerful physical

insight and offer a proof-of-concept. Hence, a shift towards

buckliphilia is made32 focussing its efforts on demonstrat-

ing that the postbuckling regime allows for dramatic recon-

figurations which can be exploited for function, thus

harnessing instabilities. For example, in archimats, local

bistable mechanisms triggered by small geometric varia-

tions are easily incorporated via AM leading to trapping

of elastic strain energy as demonstrated experimentally and

numerically in ref.33 3D printing is also regarded as a ver-

satile tool for implementing nudges for tailored buckling

configurations.34 As emphasized in ref.,30 the interplay

between analytical, numerical and experimental techniques

is of utmost importance, such that the way through a

plethora of unstable postbuckling equilibrium can be deter-

mined. Thus, hereafter the further important building

blocks are presented.

Numerical modelling

Computational methods allow gaining further insight

into mechanisms observed in experiments as they are

capable of providing detailed information on the

local non-linear deformation and stress states within

archimats.35–38 Large deformations,39,40 for example, due

to buckling,41–43 as well as material non-linearities, due to

plastic yielding, or damage within the struts,35,39,44–47 can

be accounted for. Therefore, the complex failure behaviour

of archimats involving crushing under compressive

loading35,38,42,43,48,49 or the fracture behaviour under

various loading conditions47,50,51 can be studied using

numerical modelling.

Modelling approaches found in the literature for simu-

lating of the mechanical behaviour of archimats by means

of the finite element method (FEM) can be grouped into

Völlmecke et al. 3



discrete and continuum modelling approaches. Both

approaches will be discussed in more detail in the following

subsections.

Discrete modelling

Within discrete modelling approaches, archimats are mod-

elled in their entire complexity, that means, each lattice

member is explicitly resolved. Discrete models can be

divided into unit cell (UC) models and models of the whole

finite-sized archimat.

In general, UC models assume archimats of infinite size

and, therefore, employ periodic boundary conditions52

allowing for the application of macroscale stress or strain

fields. A UC may consist of one or several base cells of the

archimat where the base cell is the smallest geometric

microstructure with which the infinite (or finite) structure

can be reconstructed by repetitive translation along the axes

of the base cell.53 The number of base cells within a UC

depends on the mechanisms to be investigated. For deter-

mining the effective linear or non-linear elastic properties

of the archimat by means of computational homogeniza-

tion, one base cell is sufficient.42,44,54 To some extent,

structural irregularities can also be considered in such

models.42,50,55 For studying the onset of buckling and the

postbuckling behaviour of archimats, the size of the UC,

that is, the number of base cells within a UC has to be large

enough to capture all relevant microscale deformation

mechanisms.48 In this case, UCs are often denoted as

RVE.40,55–57 In the literature, various studies can be found,

which use UC models for studying microscale buckling

within archimats.35,40,48,53,55–58 In combination with the

Bloch wave method, UC models are capable of accounting

for buckling modes with wavelengths (far) larger than the

UC size.53,59–61 This can be exploited in the optimization of

archimats with respect to their resistance to buckling.62 For

further details on the optimization of archimats, the reader

is referred to Osanov and Guest63 and Thomsen et al.62 as

well as the references provided therein. UC models can also

provide valuable information on the yield strength38,44 and

the crushing behaviour of archimats35,48 if the UC size is

appropriately chosen.

Modelling the archimat structure in its entire size

is required if the localization of deformation such

as the formation of crush bands under compressive

loading38,42,43,48,55,57,64–66 or the formation of elastic

shear bands in the vicinity of crack tips51 are to be studied.

Other aspects that are included in finite-sized models are

boundary conditions similar to those in experiments and

effects resulting from free edges. Consequently, these

models allow for a direct comparison with experi-

ments.37,38,57,64,65,67 Furthermore, finite-sized archimat

models allow considering structural irregularities in a sta-

tistical manner. Typical irregularities are a misalignment of

struts and vertices,42,43,47,48,55,66,68,69 radius variations

within individual struts,55,67 porosity of the parent

material67 and missing struts or missing clusters of

struts.43,66,68,69

For the finite element discretization either continuum

elements36,38,55–58,62or structural elements such as

beams40,42–44,46,49,53,55,61,67,70,71or shells38,66 have been

used. Continuum element models provide a detailed repre-

sentation of the geometry of archimats involving material

aggregation at the vertices,54 varying diameters of the indi-

vidual struts36 and manufacturing imperfections as

obtained, for example, from computer tomography scans.55

They can also account for the thickening of the struts under

large deformations due to a non-zero Poisson’s ratio of the

parent material.58 Furthermore, they provide highly

resolved information about the stress and strain field within

lattice members close to the vertices.35,36,54,72 Continuum

element models are computationally demanding and con-

sequentially are mainly used in UC models35,38,54,56–58,62

but, due to increasing computational power, they are get-

ting more frequently employed for studying the mechanical

behaviour of archimats of finite size.36,56,57,72

Using structural instead of continuum elements leads to

a much higher computational efficiency, where beam ele-

ments being commonly employed. For low-density archi-

mats, beam models have been shown to provide reliable

predictions of the mechanical behaviour involving the

overall (non-)linear elastic properties,40,42,54,71 the onset

of buckling,48,53,60,61,70 the collapse and crushing beha-

viour,35,42–44,64 as well as the fracture behaviour.47,50,51

However, within beam models, a special treatment of the

vertices is required to properly account for the locally

increased stiffness due to material aggregation as well as

the influence of the vertices on the relative density of the

archimat. Concepts how these aspects can be considered

are presented, for example, in Luxner et al.54 and Smith

et al.35

Structural and continuum element models can also be

combined allowing for a detailed representation of the

stress and strain states within a limited number of conti-

nuum element modelled base cells, whereas the rest of the

archimat is discretized using structural elements.37

Continuum modelling

If a finite-sized archimat structure consists of a large num-

ber of UCs or base cells, it can become computationally

expensive to resolve the archimat in its entire complexity.

In this case, it is more feasible to represent the archimat by

a homogeneous material showing the same effective

mechanical response.

If the length scale of the macroscopic problem is far

larger than the size of the UC, that is, the principle of

separation of scales is satisfied, the effective behaviour of

the lattice can be described using a Cauchy continuum. The

corresponding effective properties of the archimat can then

be derived using classical first-order homogenization

schemes52 such as asymptotic homogenization55,73 or the
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periodic microfield approach.42,54 A comparison of differ-

ent homogenization schemes for predicting the effective

elastic moduli of various archimats can be found in Ara-

bnejad and Pasini.73

In common engineering applications of archimats, the

size of the structural problem and the UC are often of the

same order of magnitude leading to noticeable size

effects.74–77 Issues also arise in situations where highly

heterogeneous deformations occur, for example, near sharp

corners or crack tips51 as well as during the formation of

crush bands38,48,55,64,65 as a consequence of microscale

buckling. These phenomena are related to the absolute size

of the microstructure and, therefore, cannot be captured

using classical Cauchy continuum theory. To overcome

this issue, generalized continua have been used as they

introduce a material length scale into the constitutive rela-

tions. Micropolar,78–82 strain-gradient82–84 or micro-

morphic85 continua have been employed to describe the

effective behaviour of archimats. For a general review and

classification of the various generalized continuum the-

ories, the reader is referred to Noor,86 Fatemi et al.,87 Forest

and Sievert,88 and references therein. For simple lattice

materials, the constitutive behaviour of the generalized

continuum models can be derived using concepts based

on beam theories78–82,89 which may even lead to closed-

form solutions for the tangent stiffness tensor.82,89 For

complex microstructures and especially if material non-

linearities of the parent material are involved, computa-

tional homogenization schemes can be employed.85,90–92

Other concepts falling within the scope of continuum

modelling of archimats are the quasi-continuum theory pro-

posed in Phlipot and Kochmann93 or the non-linear consti-

tutive models proposed by Vigliotti et al.94,95 Alternatively,

multilevel schemes can be used to study localization phe-

nomena originating from sharp edges/cracks or local buck-

ling in heterogeneous materials.93,96,97 Within these

schemes, the archimat is resolved in its full complexity

around the localization zones, whereas far away from these

‘hot spots’, a macroscale continuum model is used. Proper

coupling between the microscopic model and the conti-

nuum model has to be ensured for an accurate representa-

tion of the involved variables at different scales. Adaptive

mesh refinement is employed to simulate the propagation

of the localization zones through the material.93,96,97

The different continuum modelling concepts have been

successfully applied for simulating localization phenomena

observed, for example, during the indentation of archi-

mats,41,45,89,93 around circular holes in archimat plates

under tension95 and for other (macroscopically) inhomoge-

neous deformation states.82 Other examples involve the

bending of archimat beams,77,82 the propagation of cracks

within archimats93 and studies on the complex deformation

behaviour of tetra-chiral archimats.85

For the sake of completeness, substructuring techniques

shall be mentioned. These techniques have been used to

study buckling in periodic frame-like structures with low

memory usage98,99 and can also be adopted for example to

treat topology optimization problems in archimats.100

Design of archimats

Computational methods not only provide further insight

into mechanisms observed in experiments but can also

be utilized for designing archimats towards target appli-

cations. Examples are the design of archimats with

desired stiffness properties,101–103 with a desired auxetic

behaviour,56,57,104,105 with tailored buckling mechan-

isms at the microscale106 or with an artificially designed

anisotropy.107,108 For obtaining the desired effective

properties of archimats, either the internal architecture3

in terms of the orientation102 and aspect ratios106,109 of

the individual structural members can be modified

or a combination of different base materials can be

utilized.29,104,107 Additionally, manufacturing defects

can have a strong impact on the mechanical behaviour

of archimats17,18,55 and consequently have to be consid-

ered in the design process.

In many cases, the design of archimats is based on the

experience of the designers, and new archimats are, for

example, developed by modifying the architecture of

already existing microstructures56,104,105,109 in terms of a

trial-and-error approach. In this context, the FEM is

mainly employed to provide a proof-of-concept for the

new designs56,57,109 as well as to perform parametric

studies104,108,109 to further investigate or fine-tune the

effective mechanical response of the developed archimat.

Although this approach often results in the desired mechan-

ical behaviour, it does not guarantee the design to be the

optimal one and it does not allow for systematic develop-

ment of new archimats. Furthermore, parametric studies

can become computationally expensive as the number of

parameters strongly increases with the number of lattice

members in the UC.

Common topology optimization allows for a more stra-

tegic design of archimats towards desired properties,63 such

as extreme bulk or shear moduli,103,110 or a maximum

buckling strength62,100 under design constraints, such as

the volume fraction,103,110 or symmetries in the material

distribution.62 Within optimization schemes, typically the

FEM is employed for discretizing the design space and for

predicting the effective properties where either continuum

or structural elements can be used.63 A detailed review on

the application of topology optimization schemes for the

design of archimats is provided in Osanov and Guest.63 In

Pasini and Guest,18 the consideration of manufacturing

imperfections during topology optimization is discussed.

Employing topology optimization for the design of

archimats comes along with some issues. First, designing

archimats towards specific effective properties is an

inverse homogenization problem16 and the design space

in terms of possible microstructures to be considered

is infinite-dimensional.111,112 Second, the obtained

Völlmecke et al. 5



optimum design is sensitive to the initial choice of the

microstructure.103,110 and third, the optimization proce-

dure can become computationally expensive112 when

many iterations are required until the optimum design is

found.

Machine learning allows to address most of the issues

arising with common topology optimization schemes111,113

and has successfully been employed in the design of

archimats,101,107,111,112 alloys,113 composite materials114,115

and frame structures.116,117 Machine learning can be

employed for property prediction107,116,118 as well as for

optimizing the microstructure of archimats towards tar-

get applications.107,111 In the design of archimats, it can

be used for topology optimization,101,111 for finding the

optimum composition of UCs consisting of lattice

members with different materials,107 for designing

archimat families112 as well as for multiscale system

design,112 for example, to obtain functionally graded

structures showing a distinct deformation. Machine

learning techniques provide a numerically efficient way

in the design of archimats but rely on a sufficiently large

data set for training the underlying algorithms. This

training data sets consist of different realizations of the

arichmat’s microstructure under consideration of the

design variables and the information on the respective

mechanical response of each realization. The training

data set is often constructed by means of finite element

simulations101,111,113,114 and consequently requires

some numerical effort. However, the number of realiza-

tions to be considered within a training data set is by

orders of magnitudes smaller than the number of possi-

ble realizations107,114 of the archimats microstructure.

General overviews on the application of machine learn-

ing techniques in materials design and discovery can be

found, for example, in Agrawal and Choudhary119 and

Liu et al.120

Experimental investigations

Experimental investigations on archimats vary across

scales and material type. Usually used for material property

characterization, detection of imperfection and investiga-

tion of failure propagation, these experimental methods can

offer rich data onto which numerical simulations can be

informed and calibrated and analytical models verified.

Typically archimats, as porous materials, have shown a

tendency to reduce in volume progressively under com-

pression while absorbing energy. The aforementioned char-

acteristics have been investigated experimentally for

several materials from the UC level (micro) to assembly

level (meso) up to studies on the macro level where the

performance of archimats in composite configurations as

aggregated in Table 1.

When an archimat comprises UC patterns in a periodic

or random packing setting, such, advanced pore morphol-

ogy aluminium foam, steel hollow spheres, cuboidal and

pyramidal lattices in 3D and chiral, honeycomb and square

planar patterns, understanding the mechanical response of

the UC is imperative, to create adequate analytical models

and numerical simulations. Such UCs can be described by a

single sphere or pyramid of a number of struts connected on

an apex or even more of these elements in spatial combina-

tions to understand the interactions of the different packing

configurations. Considering the load to be compressive, the

experimental investigation can be undertaken in a small

testing rig under displacement control, measuring load and

displacement. Owing to the size of the cells, it might prove

impractical to have clip gauge extensometer or strain

Table 1. Experimental investigations in compression exhibiting buckling and energy absorption across different scales.

Scale

Type Micro (UC) Meso (assembly) Macro (structural component)

Metal foams closed
cell

Uniaxial stress–strain behaviour in
constrained and unconstrained
conditions121–125

Global and local buckling of sandwich
plates with metal foam core126

Metal or metal foam
hollow spheres

Mechanical behaviour
of single spheres127,128

Compressive properties of steel foam
hollow sphere assemblies129–131

Global buckling of sandwich struts
with steel foam hollow spheres in
the core132

APM Mechanical behaviour
of single spheres133

Compression testing of uniform and
graded assemblies134,135

Pyramidal/truss Mechanical behaviour
of single pyramid136

Mechanical behaviour in
compression11,137–139

Global buckling of structural elements
reinforced with lattices140

Open-cell lattices Mechanical behaviour of lattices in
compression9

Buckling and failure in cellular- and
lattice-reinforced columns6,141

Metal foams (open
cell)

Buckling and crushing in
compression142,143

Honeycombs and
chirals

Mechanical behaviour under
compression49,144,145

Experimental crashworthiness and
buckling146

UC: unit cell; APM: advanced pore morphology.
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gauges, but non-contact X-ray tomography or surface digi-

tal image correlation (DIC) might be of use. It is expected

to see some limited elastic compressive deformation

locally followed by elastoplastic buckling of the ligaments

or cell walls until the complete loss of strength and crush-

ing of the UC as shown in Figure 2.

In the case of metal foams, where a single cell or a

small number of them are not representative of the struc-

ture, meso (or assembly) scale investigation is needed.

The same applies to adhesively bonded hollow spheres

when the adhesive bonds can play a role in crushing of

subsequent cells. According to the standard method for

the compression of porous metals,147 a mesoscale speci-

men should have at least 10 cells on average in each

dimension. If the packing is regular (i.e. body-centered

cubic [BCC], face-centered cubic [FCC] or hexagonal

close packed [HCC]), measuring the external deforma-

tions using DIC techniques can suffice in capturing the

onset of failure and its early propagation. Having said that,

as ligaments or cell walls collapse, large deformations

will not be captured by the DIC system, losing some of

that data, which can be partially recovered from the cross

head displacement monitoring.130 For smaller specimens

or when there is interest to map the internal structure of a

metal foam, X-ray tomography can capture the internal

3D structure during quasi-static loading.124 This can be

done by having at least three sources and receivers in three

different positions aiming at the specimen in the loading

rig which is placed securely in a lead-reinforced room.

The other case is having one source and receiver, spinning

around the specimen under load.

The stress–strain response of porous archimats under

uniaxial compression usually comprises three parts. A

quasi-elastic region that is usually linear (stage I) followed

by a plateau close to the first peak stress (stage II). The

plateau is actually a succession of crush bands forming as

deformation progresses in the assembly. According to the

standard,147 the plateau mean stress can be calculated as the

average stress between 20% strain to 30 or 40% strain,

depending when stage III begins. Once all the ligaments

or cell walls in each crush band have collapsed, the stiffness

of the specimen rises steeply as all the pores close and

densification takes place. If the material is brittle and exhi-

bits little or no cohesion, the plateau would be much

smaller in extent and densification will not occur as the

specimen will crumble at reduced load as depicted in

Figure 3.

Buckling and postbuckling at a macroscale have been

investigated when archimats are used within components of

composite structural elements.49,146 Using lattices, honey-

combs or metal foams as cores in sandwich configurations

or filling square tubes and cylinders with archimats, can

provide the integrated structure with bending and buckling

resistance, improved energy dissipation and crashworthi-

ness. The presence of archimats can absorb strain energy

upon compressive or combined loading and affect local

buckling modes, by reducing the amplitude of the stress–

strain snaking as the buckle pattern changes, thus increas-

ing energy absorption. If archimats are exposed, DIC tech-

niques can offer valuable insight with surface strain maps6;

otherwise, the effect of archimats can be measured by com-

paring the strength, stiffness and deformation patterns to a

(a) (b)

Figure 2. Hypothetical UCs under compressive loading:
(a) open-cell buckling as struts buckle in in Euler type buckling
and (b) closed UC, indicating cell wall buckling, which includes
double curvature and thus more stable. UC: unit cell.

Figure 3. Typical stress–strain diagram of archimats in com-
pression. Metal foams and metal foam hybrid assemblies will go
through all three stages to densification while brittle archimats
will not exhibit a plateau.11
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control configuration, such as empty hollow sections of the

same dimensions.148

Conclusions

In this article, an overview of analytical, numerical and

experimental methods for investigating the buckling and

postbuckling behaviour of archimats has been presented.

Analytical methods can be split into two strategies: linear

and geometrically non-linear methods. If the former is pur-

sued, no insight into the postbuckling behaviour will be

obtained. If the archimat is, however, to be investigated

or even aimed to be manipulated in the postbuckling range,

geometrically non-linear modelling is to be pursued. With

the aid of geometrical models with few degrees of freedom,

an archimats may even be tuned to follow certain desirable

structural responses. AM may furthermore be useful to

proof the concepts derived using geometrically non-linear

models.

Numerical methods can be grouped into discrete and

continuum modelling approaches. Within discrete models,

the archimat is represented in its entire complexity. These

models allow for a detailed investigation of the deforma-

tion and stress states at the microscale of the archimat but

come with high computational requirements. Conse-

quently, continuum models are employed for simulations

of archimats within structural applications. Mainly, gener-

alized continuum theories are used to describe the effective

mechanical behaviour of the archimat at the macorscale.

These theories introduce a material length scale into the

constitutive relations and therefore allow to account, for

example, for size effects or the buckling-induced localiza-

tion of deformations observed for archimats.

In experimental methods, a scale and material type-

dependent strategy is required to quantify behaviour from

the UC level all the way to structural component level.

When the internal structure needs to be identified, X-ray

tomography methods can be used during testing; otherwise

if deductions can be made from surface strains, then DICs

techniques can be of use.
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145. Shim J, Shan S, Košmrlj A, et al. Harnessing instabilities for

design of soft reconfigurable auxetic/chiral materials. Soft

Matter 2013; 9(34): 8198–8202.

146. Sun F, Lai C, Fan H, et al. Crushing mechanism of hierarch-

ical lattice structure. Mech Mater 2016; 97: 164–183.

147. Standard I. ISO 13314: 2011 (E) 2011 Mechanical testing of

metals-ductility testing-compression test for porous and cel-

lular metals. Ref number ISO; 13314(13314): 1–7.

148. Sun G, Li S, Liu Q, et al. Experimental study on crash-

worthiness of empty/aluminum foam/honeycomb-filled

CFRP tubes. Compos Struct 2016; 152: 969–993.

12 Composites and Advanced Materials



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 266
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 266
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 900
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 175
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50286
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 9
      /MarksWeight 0.125000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
  /SyntheticBoldness 1.000000
>> setdistillerparams
<<
  /HWResolution [288 288]
  /PageSize [612.000 792.000]
>> setpagedevice


