Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/22854
Πεδίο DCΤιμήΓλώσσα
dc.contributor.authorAurangzeb, Khursheed-
dc.contributor.authorAslam, Sheraz-
dc.contributor.authorMohsin, Syed Muhammad-
dc.contributor.authorAlhussein, Musaed-
dc.date.accessioned2021-08-24T06:04:48Z-
dc.date.available2021-08-24T06:04:48Z-
dc.date.issued2021-
dc.identifier.citationIEEE Access, 2021, vol. 9, pp. 22035 - 22044en_US
dc.identifier.issn21693536-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/22854-
dc.description.abstractBased on energy demand, consumers can be broadly categorized into low energy consumers (LECs) and high energy consumers (HECs). HECs use heavy load appliances, e.g., electric heaters and air conditioners, and LECs do not use heavy load appliances. Thus, HECs demand more energy compared to LECs. The usage of high energy consumption appliances by HECs leads to peak formation in various time intervals. Different pricing schemes, i.e., time of use (ToU), real time pricing (RTP), inclined block rate (IBR), and critical peak pricing (CPP), have been proposed previously. In ToU, an energy tariff is divided into three blocks, i.e., on-peak (high rates), off-peak (low rates), and mid-peak (between on-peak and off-peak rates) hours, and these rates are applied to all electricity users without distinction. The high energy demand by HECs causes the high peak formation; thus, higher rates should be applied to only HECs rather than all consumers, which is not the case in existing billing mechanisms. LECs are also charged higher rates in on-peak intervals and this billing mechanisms are unjustified. Thus, in this paper, a fair pricing scheme (FPS) based on power demand forecasting is developed to reduce extra bills of LECs. First, we developed a machine learning-based electricity load forecasting method, i.e., an extreme learning machine (ELM), in order to differentiate LECs and HECs. With the proposed FPS, electricity cost calculations for LECs and HECs are based on the actual energy consumption; thus, LECs do not subsidize HECs. Simulations were conducted for performance evaluation of our proposed FPS mechanism, and the results demonstrate LECs can reduce electricity cost up to 11.0075%, and HECs are charged relatively higher than previous pricing schemes as a penalty for their contribution to the on-peak formation. As a result, a fairer system is realized, and the total revenue of the utility company is assured.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofIEEE Accessen_US
dc.rightsThis work is licensed under a Creative Commons Attribution 4.0 Licenseen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectExtreme learning machinesen_US
dc.subjectFair pricing schemeen_US
dc.subjectLoad forecastingen_US
dc.subjectLow energy consumersen_US
dc.subjectPricing tariffen_US
dc.subjectSmart griden_US
dc.subjectTime of useen_US
dc.titleA Fair Pricing Mechanism in Smart Grids for Low Energy Consumption Usersen_US
dc.typeArticleen_US
dc.collaborationKing Saud Universityen_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationCOMSATS University Islamabaden_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.journalsOpen Accessen_US
dc.countrySaudi Arabiaen_US
dc.countryCyprusen_US
dc.countryPakistanen_US
dc.subject.fieldNatural Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1109/ACCESS.2021.3056035en_US
dc.identifier.scopus2-s2.0-85100786323-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85100786323-
dc.relation.volume9en_US
cut.common.academicyear2020-2021en_US
dc.identifier.spage22035en_US
dc.identifier.epage22044en_US
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.openairetypearticle-
crisitem.journal.journalissn2169-3536-
crisitem.journal.publisherIEEE-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0003-4305-0908-
crisitem.author.parentorgFaculty of Engineering and Technology-
Εμφανίζεται στις συλλογές:Άρθρα/Articles
Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΜέγεθοςΜορφότυπος
A_Fair_Pricing_Mechanism_in_Smart_Grids_for_Low_Energy_Consumption_Users.pdfFulltext6.19 MBAdobe PDFΔείτε/ Ανοίξτε
CORE Recommender
Δείξε τη σύντομη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

32
checked on 14 Μαρ 2024

WEB OF SCIENCETM
Citations

25
Last Week
0
Last month
1
checked on 29 Οκτ 2023

Page view(s)

312
Last Week
0
Last month
27
checked on 14 Μαρ 2025

Download(s)

286
checked on 14 Μαρ 2025

Google ScholarTM

Check

Altmetric


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons