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ABSTRACT Based on energy demand, consumers can be broadly categorized into low energy con-
sumers (LECs) and high energy consumers (HECs). HECs use heavy load appliances, e.g., electric heaters
and air conditioners, and LECs do not use heavy load appliances. Thus, HECs demandmore energy compared
to LECs. The usage of high energy consumption appliances by HECs leads to peak formation in various
time intervals. Different pricing schemes, i.e., time of use (ToU), real time pricing (RTP), inclined block
rate (IBR), and critical peak pricing (CPP), have been proposed previously. In ToU, an energy tariff is divided
into three blocks, i.e., on-peak (high rates), off-peak (low rates), and mid-peak (between on-peak and off-
peak rates) hours, and these rates are applied to all electricity users without distinction. The high energy
demand by HECs causes the high peak formation; thus, higher rates should be applied to only HECs rather
than all consumers, which is not the case in existing billing mechanisms. LECs are also charged higher rates
in on-peak intervals and this billing mechanisms are unjustified. Thus, in this paper, a fair pricing scheme
(FPS) based on power demand forecasting is developed to reduce extra bills of LECs. First, we developed
a machine learning-based electricity load forecasting method, i.e., an extreme learning machine (ELM),
in order to differentiate LECs and HECs. With the proposed FPS, electricity cost calculations for LECs and
HECs are based on the actual energy consumption; thus, LECs do not subsidize HECs. Simulations were
conducted for performance evaluation of our proposed FPS mechanism, and the results demonstrate LECs
can reduce electricity cost up to 11.0075%, and HECs are charged relatively higher than previous pricing
schemes as a penalty for their contribution to the on-peak formation. As a result, a fairer system is realized,
and the total revenue of the utility company is assured.

INDEX TERMS Smart grid, low energy consumers, pricing tariff, load forecasting, extreme learning
machines, time of use, fair pricing scheme.

I. INTRODUCTION
A report by the International Energy Agency (published
in 2016) stated that power demand is increasing daily due
to an increasing number of electrical appliances, and a large
portion (40 %) of the total demand is utilized in residen-
tial buildings [1]. Power demand is increasing compared
to energy supply; thus, traditional power grid systems are
facing various challenges, e.g., energy production, energy
distribution, energy transmission, and price calculation.
Thus, new technologies that can convert traditional grids to
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smart grids are required. In the smart grid era, the above-
mentioned challenges can be solved by employing various
programs, i.e., demand response (DR), demand-side man-
agement (DSM), and supply-side management. DSM strate-
gies [2]–[4] play an important role in reducing energy bills of
residential consumers and minimizing peak creation, which
helps utility companies avoid blackouts or other dangers.
In addition, power grid operators also offer several pric-
ing mechanisms to address power-related challenges. These
energy pricing strategies are separated into twomajor classes:
quantity-differ and time-differ energy tariffs [5], [6]. Real-
time pricing (RTP) and time of use (ToU) tariffs refer to time-
differ pricing, where prices are reduced or increased based
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on predefined time periods. In the RTP tariff, energy rates
vary dynamically based on real-time power consumption.
The literature [7] states that a dynamic pricing strategy is an
efficient mechanism to optimize the energy utilization of res-
idential consumers. Inclined block rate (IBR) tariff belongs
to quantity-differ tariffs, where the energy price increases
after passing a specific energy consumption threshold during
specific time slots. Energy users can avoid power consump-
tion in these time slots to avoid higher costs. Consequently,
the power grid avoids peak creation in these time
slots.

The ToU pricing scheme has fixed prices in various time
slots, e.g., off-peak (low price), mid-peak (medium price),
and on-peak (high price) hours [2]. The primary goal of
the ToU pricing scheme is to motivate energy consumers to
consume power intelligently by incentivizing (in terms of low
cost) end users to shift their load to off-peak hours. A large
number of recent studies have focused on ToU from eco-
nomic perspectives in various power sectors, i.e., Taiwan [8],
Brazil [9], China [10], and Australia [6]. There are three types
of electricity users: high-energy consumers (HECs), low-
energy consumers (LECs), and medium-energy consumers
(MECs). LECs are those consumers who consume too low
energy, while the consumers with high energy consumption
are called HECs and the consumers that they have load
demand between LECs and HECs are called MECs.

However, state-of-the-art studies have either failed to ade-
quately incentivize LECs or just focused on DR programs.
They propose financial incentives only to participating (in DR
programs) consumers and ignore LECs while proposing
energy tariffs. Therefore, this study focuses on LECs by
providing a novel extreme learning machine (ELM)-based
fair pricing scheme (FPS). Since, LECs do not cause peak
generations; thus, why do LECs pay higher costs during
on-peak hours? The high peak in any time interval is only
generated by HECs; thus, in the proposed FPS mechanism,
they are proposed to pay higher costs during on-peak hours
compared to LECs. Day-ahead load demand is required to
distinguish LECs and HECs; thus, this work extends our
previous study [6] and develops an ELM-based day-ahead
load forecasting model to predict the load demand of various
consumers. Then, based on the predicted load demand, a FPS
tariff is proposed for LECs and HECs.

Our primary contributions are summarized as follows.
• We develop a novel pricing model that benefits LECs.
• We formulate the proposed pricing model as a two-stage
optimization model, where power load is predicted to
differentiate LECs and HECs at the first and then at
the second stage, a novel FPS is developed based on
forecasted load.

• We develop an ELM-based day-ahead load forecasting
model.

The remainder of this paper is organized as follows.
Next section discusses literature review. Section III dis-
closes the proposed system model (including the pricing
and load forecasting models) and the problem formulation.

Simulation settings and results are discussed in Section IV.
Finally, Section V concludes the paper.

II. LITERATURE REVIEW
Over the last decade, several studies have considered the
economic perspective of ToU pricing scheme in various elec-
tricity markets, e.g., Brazil [9], China [10], Australia [6], and
Taiwan [8]. Many studies have investigated energy cost mini-
mization for residential consumers and peak load shaving for
utility companies by proposing various pricing tariffs. This
section introduces some recent studies that focused on the
above-mentioned issue.

A previous study [11] developed a load shaping policy,
which relies on a dynamic pricing (DP) model in order to mit-
igate energy cost and balance user demands and energy sup-
ply. In addition, an incentive-based dynamic pricing strategy
has been developed in [12]. This strategy motivates energy
users to shift their maximum energy consumption to low-peak
slots. Sibo Nan et. al., in [13] have developed and imple-
mented a demand response program considering residential
community as smart in which residential loads are grouped
into various classes and then scheduling is performed for con-
sumer’s cost minimization. Results prove effectiveness of the
proposed pricing strategy in terms of cost reduction, decrease
in peak valley and peak load difference and the user’s com-
fort. Another paper [14] also investigated dynamic pricing
problems, where energy providers offer day-ahead energy
tariffs and users can schedule their power load that increases
user benefits in terms of reduced cost. In [15], a reinforcement
learning-based DP mechanism was proposed, through which
utility companies can make an optimal decisions about tariffs
by knowing the consumers’ energy consumption behaviors.
Another study [16] proposed a cost-efficient energy man-
agement system by employing dynamic pricing to balance
energy demand and supply. This study also exploited heuris-
tic algorithms, i.e., the enhanced differential evolution and
harmony search algorithms, to shift load demand from on-
peak to off-peak slots. In addition, Babar et al. [17] developed
a multi-agent-based energy management system to mitigate
peaks in smart buildings. Here, the ToU pricing method was
implemented to encourage end-users to schedule energy con-
sumption from high price to low price hours, which realized
alleviation of peak generations.

One study [18] proposed a RTPmechanism for energy cost
alleviation, where several energy consumers and multiple
retailers were considered for implementation. They mod-
eled the decision process of RTP as a Stackelberg game
framework. Further, coordination among all energy con-
sumers was formulated as an evolutionary game. In contrast,
price competition among energy providers was modeled as
a non-cooperative game. Simulation results demonstrated
that the price was minimized by employing the RTP mech-
anism, and, as a result, energy consumers incurred mini-
mum cost. Authors of [19] have focused on electricity con-
sumer’s preferences and utility’s profit. They have proposed
a dynamic pricing algorithm using reinforcement learning
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for decision making. Evaluation results proved the proposed
study equally beneficial for utility and consumers. Another
cost minimization study [20] developed a cost reduction
mechanism using dynamic pricing signals. This study pro-
posed a cost-oriented and comfort-oriented pricing tariff to
facilitate energy consumers, and extensive simulations were
performed to demonstrate the performance of proposed cost-
oriented and comfort-oriented pricing tariffs over standard
day-ahead real-time prices. The results validated that con-
sumers could enjoy maximum comfort with affordable cost
over counterparts.

Faza et al [21] evaluated two intelligent dynamic pricing
schemes, i.e., clipping and percentage reduction schemes,
by employing a particle swarm optimization algorithm. They
performed a large number of experiments with the real-time
load demand data for Amman city, Jordan, where various DR
strategies were implemented with these two pricing schemes.
The experimental results provided evidence for reasonable
behavior of clipping and percentage reduction schemes in
terms of cost reduction (up to 12%). Urooj et. al., have
implemented genetic algorithm (GA) for scheduling of con-
sumer’s electricity load to decrease electricity cost in [22].
They have used renewable energy data, user’s preferences,
and energy demand as input parameters to GA, while employ-
ing real time pricing scheme. Evaluation results validate the
effectiveness of proposed scheme in terms of cost alleviation
and grid stability. Another study [23] developed a behav-
ioral real-time pricing (B-RTP) mechanism based on energy
consumers’ behaviors. They claimed that no pricing scheme
fairly rewards demand responsive consumers, who are more
interested in adopting energy-efficient habits than other users.
Thus, existing pricing tariffs do not motivate behavior change
because they do not provide sufficient incentives. To address
this issue in existing pricing models, the proposed B-RTP
mechanism provides incentives to energy consumers who
are actively involved in DR strategies. Based on simulation
results, they performed a comparative analysis, and it was
proven that the proposed B-RTP mechanism is beneficial for
energy consumers in terms of energy bills reduction. Another
behavioral RTP strategy, namely Fair RTP (FRTP) [24], has
been proposed. This scheme fairly and dynamically adjusts
incentives offered to participating energy consumers. This
pricing mechanism offers a high level of fairness relative
to distributing financial incentives among consumers based
on the level of involvement in DR programs. Furthermore,
their proposed FRTP can be adjusted dynamically based on
conditions in the wholesale market, the level of competition
among retailers (utility companies), and the flexibility level
of energy consumers. A comparative analysis was performed
to validate the effectiveness of the proposed FRTP, and the
results indicated that the proposed scheme was more suit-
able for consumers compared to a benchmark scheme, i.e.,
standard RTP.

Another previous study [25] developed a data-driven pric-
ing strategy to reduce peak load for utility companies.
This strategy coordinates with demand side aggregators, and

the primary goal is to achieve peak shavings in different
hours. They performed extensive simulations to validate
their proposed data-driven pricing strategy over existing
pricing schemes, i.e., ToU and flat pricing. The results
confirmed that the proposed pricing strategy can allevi-
ate peaks by encouraging energy users to schedule energy
usage in different time slots. In [26] authors have stated
that it is challenging task to maintain a balance between
user comfort and energy cost. Therefore, they have proposed
and implemented a hybrid genetic algorithm-particle swarm
optimization (GAPSO) algorithm for effective and efficient
management of residential load. Results of the proposed
scheme were compared with genetic algorithm and binary
particle swarm optimization algorithm. Proposed schemewas
proved more efficient and effective for minimization of cost
and peak power consumption.

Based on this brief literature review, we conclude that
researchers from academia and industry are working to find
a uniform, comprehensive, and justified pricing mechanism
for energy consumers in smart grids. However, to the best
of our knowledge, none of the reviewed studies considered
LECs while proposing their pricing tariffs. For example,
[11], [12], [14]–[18], [20], [21] treated HECs and LECs at
the same place without considering the fact that peak is only
created due to LECs. Several previous studies [23], [24] pro-
posed behavioral pricing strategy that can benefit consumers
who actively participate in DR strategies even they cause
peaks in different hours, and another study [25] proposed
a pricing mechanism that only benefits utility companies
in terms of peak alleviation. However, the peaks are only
generated by HECs; thus, why are the LECs charged higher
during peak hours? To the best of our knowledge, the current
study is the first to consider LECs in the development of
energy tariffs, i.e., LECs are not charged high rates. As high-
peaks is generated because of HECs so, different rates are
offered for all energy users based on their energy consump-
tion, and HECs have to pay high prices during on-peak hours.
Accordingly, the cost burden due to the high price in peak
hours on LECs is minimized significantly.

III. PROPOSED SYSTEM MODEL
This section unfolds proposed system model, the requisite
mathematical formulations, and the ELM-based load fore-
casting model.

In modern era, electricity services are being changed from
traditional grid system to smart grid system in which two way
flow of communication data and electricity between utility
and customer is possible. Electricity consumers can partici-
pate in electricity management thus can affect the grid stabil-
ity, demand response program and electricity cost. A win-win
pricing scheme has always remained a dream and various
pricing schemes have been proposed by research community
in this regard. Primary goal of this study is to propose a fair
pricing scheme that reduces energy costs for LECs. Energy
users are broadly categorized based on their power consump-
tion, i.e., HECs and LECs, which are denoted by hec and lec,
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TABLE 1. Residential energy tariff offered by Multan Electric Power
Company (MEPCO), Pakistan [28].

FIGURE 1. Season-based TOU in Pakistan [31].

respectively. We denoted a single home as h and h ε [H ] =
{1, 2, 3, . . . .,H}. Here, each individual house has n different
electrical appliances app = {1, 2, 3,. . . , n}. In time period t ,
each smart home has a specific energy demand, where one
time slot is represented by t ε [T ] = {1, 2, 3, . . . .,T }. In this
study, we consider 24 hours (single day).We assume a similar
energy tariff is offered to all houses in any hour [27], which
is presented by λ(t). Here, we consider the ToU pricing tariff
from MEPCO Pakistan [28], which is shown in Table 1 and
Fig. 1. The target problem and mathematical modeling are
described in the following section.

A. PROBLEM DESCRIPTION
The authors of [29] and [7] explored different threshold-based
policies to alleviate peak power consumption. The authors
of [29] employed a strategy for smart homes where energy
consumers consume energy only when the tariff is less than
the desired threshold. In [7], the authors extended the explo-
ration in [29] by adopting a policy (threshold) demanded by
the user. Here, if a user demands a specific amount of energy
υ at specific time t , the request is satisfied if and only if it
is less than the desired threshold. Furthermore, the energy
demand exceeding the desired threshold is delayed to future
time slots. However, such a strategy is impractical because it
compromises user comfort [30]. Energy users demand access
to energy as required and do not want to compromise comfort.

The main concern in our exploration is ‘‘If LECs are not the
cause of peak creation, why should they bear high energy
costs for their small power consumption even in peak hours’’.
Thus, we propose a novel FPS that benefits LECs in terms
of minimum cost and does not disturb the interests of utility
companies.

B. PROBLEM FORMULATION
The demand of the electricity of each user in time interval t
is denoted by d . Energy price λ at any time instance t affects
electricity demand d , calculated as:

d(h) = (app
n∑

app=1

(α) × τ ), (1)

where d(h) represents the electricity demand of a smart home.
Consider that the app(α) indicates appliances that are ‘‘ON,’’
and τ represents the power ratings of these appliances.

The aggregated demand of the electric load for all high and
low electricity users at a specific time instance tis expressed
as follows:

γ (t, λ) = {dh1(t, λ), dh2(t, λ), dh3(t, λ), . . . , dH (t, λ)},

(2)

where γ (t, λ) represents the total electricity demand at
time slot t with price λ for all considered smart homes.
Here, {dh1, dh2, . . . , dH} represents the electricity demand
of smart homes {h1, h2, . . . ,H}, respectively.
Based on the electricity demand of the residential area,

the utility company advertises the 24 prices for the next
24 hours (a day) λ= {1, 2, 3,. . . .., 24}. The prices for 24 hours
are divided into 3 major blocks {b1, b2, b3}. The b1 indicates
on-peak (high price) intervals and b2 indicates off-peak (low
price) slots. Whereas, the mid-peak intervals are indicated
by b3, in which the energy price is lower than on-peak and
higher than off −peak hours. Normally, the utility advertises
three different prices λ1, λ2 and λ3 for the different blocks
b1, b2 and b3, respectively. Nonetheless, in Pakistan, the ToU
consists of only 2 blocks which are b1 (on-peak) and b2 (off-
peak), as presented in Figure 1 [31]. Since, this study employs
case study of Pakistan, therefore, two blocks of ToU, on-peak
and mid-peak, are considered for implementations. For each
peak block, the energy demand can be modeled as follows:

Xb(t) = µb+ εb(t), b = {1, . . . .,B} (3)

where µb is the average value during the bth block, and
εb(t) indicates time-dependent error. We know that the ToU
scheme in Pakistan only two blocks, i.e., off-peak (00:00 to
19:00 and 23:00 to 24:00) and on-peak (20:00 to 23:00),
as shown in Figure 2. The electricity demand of various
residential users is shown in Figure 4.

The electricity cost that is paid by each energy user is
calculated as,

bill(h) =
{ T∑
t=1

dH∑
dh=1

×λ(t)
}

(4)
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FIGURE 2. Standard ToU (July, 2019 [6]).

In this equation, the bill(h) indicates the energy cost of
every smart home and λ(t) indicates electricity price at any
time interval t . The price λ is applied for whole day except
the intervlas belong to block b1. In the equation below, a fair
pricing scheme (FPS) is presented. The FPS helps in the cost
reduction for the LECs in equation 5.

FPS − lec =
{
b0 + (λ1− 0.5× (λ2))+ λ2

}
(5)

In the above equation 5, the FPS − lec indicates the pric-
ing scheme for LECs in the smart community. The term b0
indicates the basic price, which is paid by every electricity
user for tax and service cost. that is also dependent on total
electricity demand. Consider that the λ1 and λ2 indicate the
cost for on-peak and off-peak intervals, respectively. In our
proposed FPS, the electricity cost in on-peak slots for the low
electricity user is determined as {λ1−0.5(λ2)}, to compensate
the LECs.

The new FPS for HECs is defined in equation 6.

FPS − hec =
{
b0 + (λ1+ 0.5× (λ2))+ λ2

}
. (6)

Here, 6,FPS−hec is theHECprice. Additionally, a penalty
cost {λ1+ 0.5(λ2)} for HEC is included in on-peak hours as
they contribute more in peak generation.

According to the new fair pricing scheme adopted in this
work, in on − peak hours, the higher prices will be charged
from high energy consumers only, instead of the whole com-
munity. Since the peaks are created because of the high con-
sumption of HECs so, in our study aims to minimize energy
cost for LECs using the below equation.

Min
{ H∑
h=1

bn∑
t=b1=1

dH∑
dh=1

×(λ(t))
}

s.t : ∀ t ε [b1], h ε LECs, (7)

In above equation, the b1 indicates the on − peak block
in a given day. The factor bn indicates the last hour of the

block b1. The application of these equations leads to cost
reduction for LECs. The high energy consumers will pay a
higher price in the peak hours since the peaks are generated
because of their higher energy consumption. Alternatively,
We can express our objective function of Equation 5 in the
following way.

Min
{ H∑
h=1

bn∑
t=b1=1

dH∑
dh=1

×(λ1− 0.5(λ2))
}

s.t : ∀ t ε [b1], h ε LECs, (8)

where, new pricing scheme is employed as presented in equa-
tion 5. By applying our proposed new FPS, it is guaranteed
that time interval t is within the range of b1 block and the
home h is the LECs. It is also guaranteed that the penalty is
added for HECs for maximizing their total cost. The energy
cost of HECs can be determined using equation 9.

bill − hec =
{ H∑
h=1

bn∑
t=b1=1

dH∑
dh=1

×(λ1+ 0.5(λ2))
}

s.t : ∀ t ε [b1], h ε HECs. (9)

A penalty cost is added in the above equation for HECs
in on-peak duration by applying equation 6. We should note
that energy price in off-peak intervals is determined in a
similar way for both the low and high energy consumers using
equation 4.

C. FORECASTING MODEL
Many forecasting models have been used in various stud-
ies [32]–[34] for load prediction. In this study, we have used
an ELM forecasting model for time-series load prediction
and further, segregation of LECs and HECs on the basis of
a reliable load prediction. This section explains the ELM
in a sufficient detail. In addition, this section describes the
parameters of the load forecastingmodel. ELM belongs to the
feed-forward neural network (FNN) family, which is adopted
for regression, classification, compression, clustering, sparse
approximation, and feature learning tasks with a single hid-
den layer, whereas a hidden node’s parameters do not need to
be tuned. The ELM is a three-layer NN that can approximate
the complex non-linearity of data [35], [36]. ELM is a new
learning method having higher performance. Implementation
of generalized single hidden layer FNNwith ELM has gained
huge attention of research community. The ELM completes
the learning procedure in two steps, where the input weights
and hidden biases are initialized randomly as the first step.
Then, the output weights are computed via an inverse oper-
ation on the hidden-layer output matrix. The basic idea of
ELM is that NN learning is transformed to a least-squares
problem that can be solved easily and quickly [37]. Based on
a training set of N samples (xi, di), the single hidden-layer
FNN (Figure 3) can be formed as mentioned in [37]:

n∑
j=1

βjg(wj.xi + bj) = oi, i = 1, . . . ,N . (10)
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FIGURE 3. Single hidden-layer FNN.

TABLE 2. Parameters of ELM.

FIGURE 4. Power consumption of HEC and LEC for the month of July.

where, xi and di denotes input pattern and desired output,
respectively. On the contrary, g(.) denotes activation function,
n shows number of hidden layers, and actual output is denoted
by oi. Furthermore, wj, βj, and bj show input weight, output
weight, and hidden bias, respectively.

If the training error is 0, we can say in this way:
n∑
j=1

βjg(wj.xi + bj) = di, i = 1, . . . ,N . (11)

IV. SIMULATION SETTING AND RESULTS
Extensive simulations have been carried out on Computer
System Core i7 using MATLAB 2019b for FPS mechanism

FIGURE 5. Electricity load forecasting for high energy consumers using
ELM and CNN.

and Python version 3.6 is used to develop load forecasting
model. This section will discuss in detail simulation results
along with achievements of the study.

In this study, to confirm the performance of the proposed
FPS mechanism, it is assumed that there is a single energy
provider and two types of energy consumers, i.e., HECs and
LECs. Unlike a previous study [6], here, we first perform load
forecasting to categorize homes as HECs or LECs by using
ELM and then its forecasting results are compared with the
forecasting results of convolution neural network (CNN) to
prove its supremacy, as shown in Figures 5, 6 and 9. Here,
it is important to note that we have performed time-series load
forecasting and we have ignored other parameters, i.e., indoor
temperature, outdoor temperature, humidity, wind speed, etc.
Then, a novel FPS is developed based on the load demand.
For simulations, datasets were taken from HEC and LEC
homes [38]. We implemented the proposed load forecasting
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FIGURE 6. Load forecasting for LEC using CNN and ELM.

model for a single day and a week to evaluate its performance.
Then, the FPS mechanism for LECs and HECs is developed
based on the load forecasting. In addition, we employed the
ToU tariff [31], which only has two blocks, i.e., off-peak
and on-peak blocks. Note that the adopted ToU varies
seasonably (Figure 1).

Here, the primary goal is to minimize the electricity bills of
LECs because they do not contribute to high-peak creation.
The energy consumption of LECs is less than that of HECs
(Figure4). Figure 4 shows the load demand for LECs and
HECs for the month of July [38]. According to the ToU
pricing mechanism, energy providers announce a single rate
in any time interval for all consumers; however, the same
price for on-peak (high price) hours is charged to LECs;
thus, the pricing distribution is not equitable. To address this
drawback of the current ToU pricing mechanism, we first
perform load forecasting, and then we apply the proposed
FPS mechanism to provide financial benefit to LECs.

FIGURE 7. ToU tariff and our fair pricing scheme for both types of
consumers, i.e., LECs and HECs.

FIGURE 8. Per hour cost paid by LEC and HEC by employing ToU and our
proposed FPS.

Figure 5 shows the load forecasting of HECs for a single
day (5a) and one week (5b). Figure 5 shows that the pro-
posed ELM-based load forecasting method provides higher
accuracy. Accordingly, Figure 6 shows the load forecasting
for LECs. Based on the load forecasting, we have proposed
a novel fair pricing scheme that is shown in Figure 7, which
presents three various prices, i.e., ToU for LECs, penalty-
based ToU for HECs, and standard ToU. As can be seen,
the standard ToU does not differentiate between HECs and
LECs because the energy rates are equal for both types of
energy users. Nonetheless, the proposed FPS mechanism
distinguishes between LECs andHECs, where the energy rate
is high for HECs, i.e., 16.00 (Rs/kWh) compared to LECs that
is 10.75 (Rs/kWh) in on-peak times (proposed ToU for LECs
is shown in yellow). In contrast, a penalty cost is incurred
in HECs’ price during on-peak hours, which is shown in
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FIGURE 9. MAPE and RMSE using CNN and ELM.

Figure 7. Accordingly, HECs must pay additional costs dur-
ing on-peak hours because these users cause peak creation.

Note that the proposed FPS mechanism is based on con-
sumer energy demands. If a consumer demands low energy,
then incentive-based FPS (low price) is applied; other-
wise, a penalty-based energy price (high cost) is charged
to specific consumers. In this study, we have categorized
LECs and HECs based power load forecasting, as shown
in Figures 5 and 6. Figure 8 shows the hourly energy cost paid
by both LECs and HECs using both energy tariffs, i.e., the
standard ToU and the proposed FPS mechanism. As can be
seen, the HECs pay a higher price in on-peak times (20:00 to
23:00), and, in contrast, LECs are charger lower rates in on-
peak hours (energy cost of LEC while using proposed FPS
is lesser than using standard ToU). Accordingly, LECs can
save 11.0075%, and HECs will pay more. Table 3 compares
energy bills for both LECs and HECs.

TABLE 3. Comparative analysis.

Eventually, to validate the proposed load forecasting
model, we performed RMSE and MAPE tests to evaluate
the error value of both algorithms, i.e., the CNN and ELM.
Figure 9 shows the error values of the ELM-based algorithms.
Figure9a shows the error value for the forecasting load of
LECs. As can be seen, the ELM has lower error values in
terms of RMSE and MAPE, as compared to the CNN tech-
nique. Accordingly, the ELM also shows high performance in
load forecasting of HECs, as shown in Figure9b. As shown,
the RMSE of ELM is lower than its counterparts; however,
MAPE is a little bit higher than that of the CNN while load
forecasting for HECs.

V. CONCLUSION
In this paper, we have discussed the inequitable ToU energy
pricing mechanism, where high prices are charged during
on-peak times to all electricity users, i.e., both LECs and
HECs. However, peaks are only created by HECs; thus, such
users should pay higher costs. Therefore, we have developed
an ELM-based load forecasting model to ensure day-ahead
load demand. Then, based on the load forecasting results,
we developed an FPS mechanism for electricity consumers
that charges customers exactly based on their actual energy
consumption, especially low rates in on-peak times for LECs
and high rates with a penalty for HECs. Simulations have
demonstrated that the proposed load forecasting model has
higher accuracy over counterparts, and HECs are charged
higher costs relative to their contribution to on-peak for-
mation. In contrast, LECs receive a financial benefit of up
to 11.0075%. Finally, using the proposed FPS mechanism,
the total revenue of the utility company remains unchanged.
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