Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/22769
Τίτλος: Solar photovoltaic forecasting of power output using lstm networks
Συγγραφείς: Konstantinou, Maria 
Peratikou, Stefani 
Charalambides, Alexandros G. 
Major Field of Science: Engineering and Technology
Field Category: Environmental Engineering
Λέξεις-κλειδιά: Solar energy;Climate change;Photovoltaic power forecasting;Machine learning;Stacked LSTM network
Ημερομηνία Έκδοσης: Ιαν-2021
Πηγή: Atmosphere, 2021, vol. 12, no. 1, articl. no. 124
Volume: 12
Issue: 1
Περιοδικό: Atmosphere 
Περίληψη: The penetration of renewable energies has increased during the last decades since it has become an effective solution to the world’s energy challenges. Among all renewable energy sources, photovoltaic (PV) technology is the most immediate way to convert solar radiation into electricity. Nevertheless, PV power output is affected by several factors, such as location, clouds, etc. As PV plants proliferate and represent significant contributors to grid electricity production, it becomes increasingly important to manage their inherent alterability. Therefore, solar PV forecasting is a pivotal factor to support reliable and cost-effective grid operation and control. In this paper, a stacked long short-term memory network, which is a significant component of the deep recurrent neural network, is considered for the prediction of PV power output for 1.5 h ahead. Historical data of PV power output from a PV plant in Nicosia, Cyprus, were used as input to the forecasting model. Once the model was defined and trained, the model performance was assessed qualitative (by graphical tools) and quantitative (by calculating the Root Mean Square Error (RMSE) and by applying the k-fold cross-validation method). The results showed that our model can predict well, since the RMSE gives a value of 0.11368, whereas when applying the k-fold cross-validation, the mean of the resulting RMSE values is 0.09394 with a standard deviation 0.01616.
URI: https://hdl.handle.net/20.500.14279/22769
ISSN: 20734433
DOI: 10.3390/atmos12010124
Rights: © by the authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution
Type: Article
Affiliation: Cyprus University of Technology 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΜέγεθοςΜορφότυπος
atmosphere-12-00124.pdfFulltext2.31 MBAdobe PDFΔείτε/ Ανοίξτε
CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

47
checked on 14 Μαρ 2024

WEB OF SCIENCETM
Citations

31
Last Week
0
Last month
3
checked on 28 Οκτ 2023

Page view(s) 50

363
Last Week
0
Last month
6
checked on 7 Νοε 2024

Download(s)

310
checked on 7 Νοε 2024

Google ScholarTM

Check

Altmetric


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons