Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/21975
Τίτλος: Detecting Migrant Vessels in the Cyprus Region using Sentinel-1 SAR data
Συγγραφείς: Melillos, George 
Themistocleous, Kyriacos 
Danezis, Chris 
Michaelides, Silas 
Hadjimitsis, Diofantos G. 
Jacobsen, Sven 
Tings, Björn 
Major Field of Science: Engineering and Technology
Field Category: Civil Engineering
Λέξεις-κλειδιά: Remote Sensing;Sentinel-1 SAR;OSINT;Migrants;Maritime Surveillance;Cyprus coasts
Ημερομηνία Έκδοσης: 20-Σεπ-2020
Πηγή: Proceedings Volume 11542, Counterterrorism, Crime Fighting, Forensics, and Surveillance Technologies IV
Volume: 11542
Issue: 115420N
Project: ERATOSTHENES: Excellence Research Centre for Earth Surveillance and Space-Based Monitoring of the Environment 
Περιοδικό: Counterterrorism, Crime Fighting, Forensics, and Surveillance Technologies IV 
Conference: SPIE Security + Defence 
Περίληψη: Remote sensing is considered as an increasingly important technology for maritime surveillance. The process of maritime surveillance for safety is critical for every country. The need for information on migrant movements by sea using different sizes and types of vessels is of paramount significance. Such information is essential for the search and rescue (SaR) operations of unauthorised migrants. The aim of this paper is to show how to detect migrant vessels in the Cyprus Region using freely available Sentinel-1 SAR data. The comparison was made using open source available migrant data and Sentinel-1 SAR acquisitions. Sentinel-1 SAR images were used to investigate three Areas of Interest (AoI). The main AoI is located at the Northwest coasts, whilst the second area includes the Southeast coasts of Cyprus. The results indicate that the Sentinel-1 SAR data can provide decision-makers with effective results and spatial information on migration routes.
URI: https://hdl.handle.net/20.500.14279/21975
DOI: 10.1117/12.2573744
Rights: Attribution-NonCommercial-NoDerivatives 4.0 International
Type: Conference Papers
Affiliation: Cyprus University of Technology 
ERATOSTHENES Centre of Excellence 
DLR - German Aerospace Center 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:EXCELSIOR H2020 Teaming Project Publications

Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΜέγεθοςΜορφότυπος
20200920_EXCELSIOR_WP10_DETECTINGMIGRANTVESSELSINCYPRUSUSINGSENTINEL1_V1_PU.pdf638.35 kBAdobe PDFΔείτε/ Ανοίξτε
CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

2
checked on 9 Νοε 2023

Page view(s) 50

378
Last Week
1
Last month
4
checked on 21 Δεκ 2024

Download(s)

662
checked on 21 Δεκ 2024

Google ScholarTM

Check

Altmetric


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons