Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/2153
Τίτλος: A computationally efficient method for solving sur models with orthogonal regressor
Συγγραφείς: Foschi, Paolo 
Kontoghiorghes, Erricos John 
Major Field of Science: Natural Sciences
Field Category: Computer and Information Sciences
Λέξεις-κλειδιά: Least squares;Problem solving;Regression analysis
Ημερομηνία Έκδοσης: 1-Σεπ-2004
Πηγή: Linear Algebra and Its Applications, 2004, vol. 388, no. 1-3 SPEC. ISS., pp. 193-200
Volume: 388
Issue: 1-3 SPEC. ISS.
Start page: 193
End page: 200
Περιοδικό: Linear Algebra and its Applications 
Περίληψη: A computationally efficient method to estimate seemingly unrelated regression equations models with orthogonal regressors is presented. The method considers the estimation problem as a generalized linear least squares problem (GLLSP). The basic tool for solving the GLLSP is the generalized QR decomposition of the block-diagonal exogenous matrix and Cholesky factor C⊗IT of the covariance matrix of the disturbances. Exploiting the orthogonality property of the regressors the estimation problem is reduced into smaller and independent GLLSPs. The solution of each of the smaller GLLSPs is obtained by a single-column modification of C. This reduces significantly the computational burden of the standard estimation procedure, especially when the iterative feasible estimator of the model is needed. The covariance matrix of the estimators is also derived.
URI: https://hdl.handle.net/20.500.14279/2153
ISSN: 243795
DOI: http://dx.doi.org/10.1016/S0024-3795(02)00544-X
Rights: © Elsevier
Type: Article
Affiliation: Université de Neuchâtel 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

4
checked on 13 Φεβ 2018

Page view(s) 50

444
Last Week
1
Last month
8
checked on 28 Ιαν 2025

Google ScholarTM

Check

Altmetric


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons