Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/2153
Τίτλος: | A computationally efficient method for solving sur models with orthogonal regressor | Συγγραφείς: | Foschi, Paolo Kontoghiorghes, Erricos John |
Major Field of Science: | Natural Sciences | Field Category: | Computer and Information Sciences | Λέξεις-κλειδιά: | Least squares;Problem solving;Regression analysis | Ημερομηνία Έκδοσης: | 1-Σεπ-2004 | Πηγή: | Linear Algebra and Its Applications, 2004, vol. 388, no. 1-3 SPEC. ISS., pp. 193-200 | Volume: | 388 | Issue: | 1-3 SPEC. ISS. | Start page: | 193 | End page: | 200 | Περιοδικό: | Linear Algebra and its Applications | Περίληψη: | A computationally efficient method to estimate seemingly unrelated regression equations models with orthogonal regressors is presented. The method considers the estimation problem as a generalized linear least squares problem (GLLSP). The basic tool for solving the GLLSP is the generalized QR decomposition of the block-diagonal exogenous matrix and Cholesky factor C⊗IT of the covariance matrix of the disturbances. Exploiting the orthogonality property of the regressors the estimation problem is reduced into smaller and independent GLLSPs. The solution of each of the smaller GLLSPs is obtained by a single-column modification of C. This reduces significantly the computational burden of the standard estimation procedure, especially when the iterative feasible estimator of the model is needed. The covariance matrix of the estimators is also derived. | URI: | https://hdl.handle.net/20.500.14279/2153 | ISSN: | 243795 | DOI: | http://dx.doi.org/10.1016/S0024-3795(02)00544-X | Rights: | © Elsevier | Type: | Article | Affiliation: | Université de Neuchâtel | Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
4
checked on 13 Φεβ 2018
Page view(s) 50
444
Last Week
1
1
Last month
8
8
checked on 28 Ιαν 2025
Google ScholarTM
Check
Altmetric
Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons