Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/2142
Τίτλος: A comparative study of algorithms for solving seemingly unrelated regressions models
Συγγραφείς: Belsley, David A. 
Foschi, Paolo 
Kontoghiorghes, Erricos John 
metadata.dc.contributor.other: Κοντογιώργης, Έρρικος Γιάννης
Major Field of Science: Social Sciences
Field Category: Economics and Business
Λέξεις-κλειδιά: Regression analysis;Algorithms;Problem solving
Ημερομηνία Έκδοσης: 28-Οκτ-2003
Πηγή: Computational Statistics and Data Analysis, 2003, vol. 44, no. 1-2, pp. 3-35
Volume: 44
Issue: 1-2
Start page: 3
End page: 35
Περιοδικό: Computational Statistics and Data Analysis 
Περίληψη: The computational efficiency of various algorithms for solving seemingly unrelated regressions (SUR) models is investigated. Some of the algorithms adapt known methods; others are new. The first transforms the SUR model to an ordinary linear model and uses the QR decomposition to solve it. Three others employ the generalized QR decomposition to solve the SUR model formulated as a generalized linear least-squares problem. Strategies to exploit the structure of the matrices involved are developed. The algorithms are reconsidered for solving the SUR model after it has been transformed to one of smaller dimensions.
URI: https://hdl.handle.net/20.500.14279/2142
ISSN: 1679473
DOI: 10.1016/S0167-9473(03)00028-8
Rights: © Elsevier
Type: Article
Affiliation: Université de Neuchâtel 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

25
checked on 9 Νοε 2023

WEB OF SCIENCETM
Citations 50

19
Last Week
0
Last month
0
checked on 29 Οκτ 2023

Page view(s) 20

448
Last Week
0
Last month
2
checked on 8 Νοε 2024

Google ScholarTM

Check

Altmetric


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons