Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/2032
Τίτλος: | Computational methods for modifying seemingly unrelated regressions models | Συγγραφείς: | Kontoghiorghes, Erricos John | metadata.dc.contributor.other: | Κοντογιώργης, Έρρικος Γιάννης | Major Field of Science: | Natural Sciences | Field Category: | Computer and Information Sciences | Λέξεις-κλειδιά: | Least squares;Algorithms;Problem solving;Regression analysis | Ημερομηνία Έκδοσης: | 1-Ιαν-2004 | Πηγή: | Journal of Computational and Applied Mathematics, 2004, vol. 162, no. 1, pp. 247-261 | Volume: | 162 | Issue: | 1 | Start page: | 247 | End page: | 261 | Περιοδικό: | Journal of Computational and Applied Mathematics | Περίληψη: | Computational efficient methods for updating seemingly unrelated regressions models with new observations are proposed. A recursive algorithm to solve a series of updating problems is developed. The algorithm is based on orthogonal transformations and has as main computational tool the updated generalized QR decomposition (UGQRD). Strategies to compute the orthogonal factorizations by exploiting the block-sparse structure of the matrices are designed. The problems of adding and deleting exogenous variables from the seemingly unrelated regressions model have also been investigated. The solution of these problems utilize the strategies for computing the UGQRD. | URI: | https://hdl.handle.net/20.500.14279/2032 | ISSN: | 3770427 | DOI: | 10.1016/j.cam.2003.08.024 | Rights: | © Elsevier | Type: | Article | Affiliation: | Université de Neuchâtel | Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
9
checked on 9 Νοε 2023
WEB OF SCIENCETM
Citations
50
7
Last Week
0
0
Last month
0
0
checked on 29 Οκτ 2023
Page view(s)
542
Last Week
2
2
Last month
3
3
checked on 29 Ιαν 2025
Google ScholarTM
Check
Altmetric
Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons