Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/2032
Τίτλος: Computational methods for modifying seemingly unrelated regressions models
Συγγραφείς: Kontoghiorghes, Erricos John 
metadata.dc.contributor.other: Κοντογιώργης, Έρρικος Γιάννης
Major Field of Science: Natural Sciences
Field Category: Computer and Information Sciences
Λέξεις-κλειδιά: Least squares;Algorithms;Problem solving;Regression analysis
Ημερομηνία Έκδοσης: 1-Ιαν-2004
Πηγή: Journal of Computational and Applied Mathematics, 2004, vol. 162, no. 1, pp. 247-261
Volume: 162
Issue: 1
Start page: 247
End page: 261
Περιοδικό: Journal of Computational and Applied Mathematics 
Περίληψη: Computational efficient methods for updating seemingly unrelated regressions models with new observations are proposed. A recursive algorithm to solve a series of updating problems is developed. The algorithm is based on orthogonal transformations and has as main computational tool the updated generalized QR decomposition (UGQRD). Strategies to compute the orthogonal factorizations by exploiting the block-sparse structure of the matrices are designed. The problems of adding and deleting exogenous variables from the seemingly unrelated regressions model have also been investigated. The solution of these problems utilize the strategies for computing the UGQRD.
URI: https://hdl.handle.net/20.500.14279/2032
ISSN: 3770427
DOI: 10.1016/j.cam.2003.08.024
Rights: © Elsevier
Type: Article
Affiliation: Université de Neuchâtel 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

9
checked on 9 Νοε 2023

WEB OF SCIENCETM
Citations 50

7
Last Week
0
Last month
0
checked on 29 Οκτ 2023

Page view(s)

542
Last Week
2
Last month
3
checked on 29 Ιαν 2025

Google ScholarTM

Check

Altmetric


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons