Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/1989
Τίτλος: | Parallel algorithms for computing all possible subset regression models using the qr decomposition | Συγγραφείς: | Gatu, Cristian Kontoghiorghes, Erricos John |
metadata.dc.contributor.other: | Κοντογιώργης, Έρρικος Γιάννης | Major Field of Science: | Social Sciences | Field Category: | Economics and Business | Λέξεις-κλειδιά: | Parallel algorithms;Mathematical models;Parallel algorithms;Regression analysis | Ημερομηνία Έκδοσης: | Απρ-2003 | Πηγή: | Parallel Computing, 2003, vol. 29, no. 4, pp. 505-521 | Volume: | 29 | Issue: | 4 | Start page: | 505 | End page: | 521 | Περιοδικό: | Parallel Computing | Περίληψη: | Efficient parallel algorithms for computing all possible subset regression models are proposed. The algorithms are based on the dropping columns method that generates a regression tree. The properties of the tree are exploited in order to provide an efficient load balancing which results in no inter-processor communication. Theoretical measures of complexity suggest linear speedup. The parallel algorithms are extended to deal with the general linear and seemingly unrelated regression models. The case where new variables are added to the regression model is also considered. Experimental results on a shared memory machine are presented and analyzed. | URI: | https://hdl.handle.net/20.500.14279/1989 | ISSN: | 1678191 | DOI: | 10.1016/S0167-8191(03)00019-X | Rights: | © Elsevier | Type: | Article | Affiliation: | Université de Neuchâtel | Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
23
checked on 9 Νοε 2023
WEB OF SCIENCETM
Citations
50
24
Last Week
0
0
Last month
0
0
checked on 29 Οκτ 2023
Page view(s)
533
Last Week
4
4
Last month
6
6
checked on 1 Φεβ 2025
Google ScholarTM
Check
Altmetric
Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons