Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/19450
Πεδίο DCΤιμήΓλώσσα
dc.contributor.authorStephanou, Pavlos S.-
dc.date.accessioned2020-11-20T09:59:06Z-
dc.date.available2020-11-20T09:59:06Z-
dc.date.issued2020-10-
dc.identifier.citationPhysics of Fluids, 2020, vol. 32, no. 10, articl. no. 103103en_US
dc.identifier.issn10897666-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/19450-
dc.description.abstractRed blood cells (RBCs) in physiological conditions are capable of deforming and aggregating. However, both deformation and aggregation are seldom considered together when modeling the rheological behavior of blood. This is particularly important since each mechanism is dominant under specific conditions. To address this void, we herein propose a new model that accounts for the deformability of red blood cells, by modeling them as deformed droplets with a constant volume, and of their aggregation, by properly characterizing the network formed by red blood cells under small shear rates. To derive the model, we employ non-equilibrium thermodynamics that allows us to consistently couple the two mechanisms and guarantees model admissibility with the thermodynamic laws. Relative to our previous model, which addresses the rheological behavior of non-aggregating deformable red blood cells, one additional structural variable, lambda, to properly characterize the network formed by RBCs, and another additional parameter, epsilon, that quantifies the relative importance between the regeneration/buildup and flow-induced breakup of the network, are considered here. The new model predicts a yield shear stress, in accord with experimental data, but also predicts non-vanishing yield normal stresses. Although no rheological measurements of yield normal stresses of blood have been reported in the literature, the recent measurement of yield normal stresses of other yield stress fluids indicates their potential existence in blood as well. We show that the new model is in complete accord with the experimental rheological behavior of normal blood in both steady-state and transient (step-change in shear-rate) simple shear.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofPhysics of Fluidsen_US
dc.rights© Author(s).en_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectPolymeric liquid-crystalsen_US
dc.subjectComplex fluidsen_US
dc.subjectSteady-stateen_US
dc.subjectRheologyen_US
dc.subjectFlowen_US
dc.subjectEquationen_US
dc.subjectShearen_US
dc.subjectViscoelasticityen_US
dc.subjectSuspensionsen_US
dc.subjectViscosityen_US
dc.titleA constitutive hemorheological model addressing both the deformability and aggregation of red blood cellsen_US
dc.typeArticleen_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryMedical Biotechnologyen_US
dc.journalsSubscriptionen_US
dc.countryCyprusen_US
dc.subject.fieldMedical and Health Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1063/5.0022493en_US
dc.relation.issue10en_US
dc.relation.volume32en_US
cut.common.academicyear2020-2021en_US
item.grantfulltextopen-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.fulltextWith Fulltext-
crisitem.journal.journalissn1089-7666-
crisitem.journal.publisherAmerican Institute of Physics-
crisitem.author.deptDepartment of Chemical Engineering-
crisitem.author.facultyFaculty of Geotechnical Sciences and Environmental Management-
crisitem.author.orcid0000-0003-3182-0581-
crisitem.author.parentorgFaculty of Geotechnical Sciences and Environmental Management-
Εμφανίζεται στις συλλογές:Άρθρα/Articles
Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΜέγεθοςΜορφότυπος
5.0022493.pdfFulltext3.74 MBAdobe PDFΔείτε/ Ανοίξτε
CORE Recommender
Δείξε τη σύντομη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

10
checked on 6 Νοε 2023

WEB OF SCIENCETM
Citations

11
Last Week
0
Last month
0
checked on 29 Οκτ 2023

Page view(s)

303
Last Week
0
Last month
3
checked on 6 Νοε 2024

Download(s)

267
checked on 6 Νοε 2024

Google ScholarTM

Check

Altmetric


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons