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ABSTRACT
Red blood cells (RBCs) in physiological conditions are capable of deforming and aggregating. However, both deformation and aggregation
are seldom considered together when modeling the rheological behavior of blood. This is particularly important since each mechanism is
dominant under specific conditions. To address this void, we herein propose a new model that accounts for the deformability of red blood cells,
by modeling them as deformed droplets with a constant volume, and of their aggregation, by properly characterizing the network formed by
red blood cells under small shear rates. To derive the model, we employ non-equilibrium thermodynamics that allows us to consistently couple
the two mechanisms and guarantees model admissibility with the thermodynamic laws. Relative to our previous model, which addresses the
rheological behavior of non-aggregating deformable red blood cells, one additional structural variable, λ, to properly characterize the network
formed by RBCs, and another additional parameter, ε, that quantifies the relative importance between the regeneration/buildup and flow-
induced breakup of the network, are considered here. The new model predicts a yield shear stress, in accord with experimental data, but also
predicts non-vanishing yield normal stresses. Although no rheological measurements of yield normal stresses of blood have been reported
in the literature, the recent measurement of yield normal stresses of other yield stress fluids indicates their potential existence in blood as
well. We show that the new model is in complete accord with the experimental rheological behavior of normal blood in both steady-state and
transient (step-change in shear-rate) simple shear.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0022493., s

I. INTRODUCTION

It is today well known that two important determinants of
whole blood viscosity, i.e., red blood cell (RBC) deformability and
aggregation, must be carefully regulated to avoid an unusual hemo-
dynamical behavior in the circulatory system. Many diseases, such
as cardiovascular ones,1 diabetes,2 inherited sickle-cell disease,3 and
malaria,4 can lead to a hardening of RBCs and more intense aggrega-
tion to occur, leading to an increase in blood viscosity compared to
healthy individuals. Given that diseases of the circulatory system are
(in 2017) the deadliest diseases in the EU,5 and possibly globally, it is
very important to be able to perform in silico simulations in order
to accurately describe the complex rheological behavior of blood
in our circulatory system. Given the advances made in performing
flow simulations of blood nowadays,6 such a task is certainly not

daunting. This would allow for an early detection of circulatory
diseases and for the more effective development of cardiovascular
devices, such as heart valves or stents.1

Our circulatory system is primarily comprised of two inter-
connected subsystems with varied functionality: macrocirculation,
i.e., blood flows through large elastic arteries and transports oxygen
and metabolites, and microcirculation, i.e., nutrient-rich blood flows
from the left ventricle to the small arteries such as prearterioles, arte-
rioles, and capillaries, which help in distributing blood to the organs
and body tissues.7 Normal blood is a highly complicated, viscoelas-
tic and thixotropic, non-Newtonian fluid consisting of blood cells
suspending in plasma (a Newtonian fluid, with a typical viscosity
of about 1.2 mPa s at 37 ○C8) composed mostly of water and pro-
teins. In addition to RBCs, blood cells include white blood cells and
platelets, with RBCs consisting the vast majority (by ∼98%); thus, the
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rheology of blood is primarily determined by the rheological behav-
ior of RBCs.1,9 Under physiological conditions, RBCs constitute 47%
in men and 42% in women of the blood volume, the so-called hemat-
ocrit (Ht).8 RBCs are shaped as biconcave disks with a disk diameter
equal to 6 μm–9 μm, whereas its thickness at the thickest point is
about 1.84 μm–2.84 μm and its minimum thickness in the center
is about 0.81 μm–1.44 μm. The typical volume of a RBC is equal
to 90 μm3.9 RBCs are very deformable since they are composed of
a thin elastic membrane (lipid bilayer) enclosing the cytoplasm (a
hemoglobin solution),9 which has a higher viscosity, equal to about
3 mPa s–10 mPa s,10 than that of the surrounding blood plasma.
Thus, the ratio of the internal (cytoplasm) and external (plasma) vis-
cosities, λη, is between 2.5 and 8.3. Under physiological conditions,
it is today well known that due to the presence of plasma proteins,
primarily fibrinogen, RBCs under low flow rates or at stasis spon-
taneously stick to each other, forming stack-of-coins formations
termed rouleaux11 that considerably affect blood viscosity, whereas
at even lower flow rates they form a three-dimensional network,12

leading to the exhibition of a yield stress.13

The viscosity of normal human blood, i.e., blood with a hemat-
ocrit value of about 42%–47%, at steady-state exhibits three distinct
regions: a lower Newtonian region (reaching the low-rate viscosity,
η0), an upper Newtonian region (reaching the high-rate viscosity,
η∞), and the intermediate region where the viscosity is decreas-
ing with increasing shear rate, i.e., the blood is shear thinning.9,14,15

This non-Newtonian behavior of blood is attributed to the aggrega-
tion of RBCs at lower shear rates, while as the shear rate increases,
the RBC deformability becomes more and more influential and
eventually predominant after about 10 s−1.16,17 Both factors, aggre-
gability and deformability, affect blood rheology under different
conditions. In large arterial blood vessels (with a diameter larger
than 1 mm), large shear rates occur leading to the destruction of
any aggregates, and thus, the deformation of single RBCs is the
only factor affecting blood viscosity.9 Deformation also plays a pre-
dominant role in capillaries, i.e., vessels that are smaller than the
RBCs at rest, where the RBCs must deform in order to enter.13

On the other hand, blood is noted to be non-Newtonian due to
RBC aggregation in regions where low shear exists, such as near
bifurcations, anastomoses, stenoses, and aneurysms,9 but also in
the neural network.18 Finally, when one is interested in the steady-
state rheological behavior of blood, we also need to consider that
blood is noted to be viscoelastic, first reported by Thurston19 who
showed that the elastic properties of whole human blood decrease
with increasing shear rate. He later conducted oscillatory experi-
ments of whole blood to determine their viscoelastic behavior and
showed that it diminishes at higher shear rates and noted evi-
dence that suggests that blood exhibits a very broad spectrum of
relaxation times.20

In addition to steady-state rheology, we also need to exam-
ine the time-dependent rheology of whole blood. This is particu-
larly important as blood in circulation experiences rapid and cyclic
changes from low- to high-shear flow conditions during the cardiac
cycle.1 Besides, thixotropy is inherently linked with time-dependent
changes. Thixotropy is defined, according to IUPAC, as the contin-
uous decrease of the viscosity with time when flow is applied to a
sample that has been previously at rest and the subsequent recovery
of viscosity in time when the flow is discontinued.21 For example,
when suddenly stepping up or down the shear rate, the viscosity

transients obtained reflect the changes in the microstructure. In par-
ticular, the growth of the viscosity after a sudden decrease in the
shear rate is an indication of thixotropy and could be employed
to test the applicability of thixotropic models.21 It is, thus, appar-
ent that if we aspire to accurately simulate the, both steady-
state and time-dependent, rheological behavior of whole blood in
both macrocirculation and microcirculation, a constitutive model
addressing aggregability, deformability, and thixotropy is certainly
needed.

From a modeling standpoint, a plethora of constitutive mod-
els have been developed aiming to address the peculiar rheological
behavior of blood. As mentioned above, under certain conditions,
e.g., in large arterial blood vessels, blood can be considered as a New-
tonian fluid. In this case, a considerable amount of work has been
devoted to unveiling the dependency of the viscosity on the hema-
tocrit, the plasma viscosity, and the maximum packing fraction.9

When shear-thinning needs to be considered, several generalized,
steady-state models can be used such as the Cross, Carreau, Carreau-
Yasuda, Quemada, Herschel–Bulkley (see, e.g., Valant et al.15

where the regularized version of the Herschel–Bulkley constitutive
equation is employed as proposed by Papanastasiou22), and Cas-
son models,9 with the last three allowing for the prediction of a
yield stress. More recently, some of these have been used as the
basis to provide a more elaborate dependency on various impor-
tant parameters, such as the generalization of the Casson model by
Apostolidis and Beris23 who considered both the viscosity and yield
stress of blood to depend on the hematocrit, the temperature, and
the fibrinogen concentration. Viscoelasticity has also been consid-
ered via the use of the Oldroyd-B and the Yeleswarapu models9 as
well as the generalized Oldroyd-B and Maxwell constitutive models
developed by Anand and Rajagopal24–26 on thermodynamic prin-
ciples. More recently, other viscoelastic models that are routinely
employed to address the viscoelasticity of polymeric materials have
also been employed to address the viscoelasticity of blood, such as
the Giesekus and Phan-Thien Tanner ones.27,28 However, perhaps
the most sophisticated model is the generalized Maxwell-type model
of Owens,29 who considered blood as an ensemble of rouleaux,
each rouleau modeled as an elastic dumbbell. He accounted for the
rouleaux aggregation and disaggregation by employing ideas from
the temporary polymer network theory, whereas the kinetic rates
needed were obtained by simply fitting experimental data. We have
recently30 proposed a modified version of the Owens model by using
the generalized bracket formalism of non-equilibrium thermody-
namics (NET),31 which has the appealing advantage of deriving the
aggregation/disaggregation kinetic rates in a self-consistent manner,
thus avoiding the need to resort to phenomenological expressions
altogether. We treated rouleaux formation and dissociation as a set
of two-way (reversible) reactions, each characterized by a forward
and a reverse rate.30

All the above models, however, fail to address the thixotropic
nature of blood under physiological conditions. To do this, we need
to identify the evolving blood microstructure that can depend on
the shear history.21 The most common approach is using structural
kinetic models, wherein the internal structure is mathematically
characterized by a scalar structural variable that expresses the instan-
taneous degree of structure: in a fully structured state, i.e., a com-
plete network that deforms elastically, it is equal to unity, while in
a completely broken state it vanishes.21 Thus, the most appropriate
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constitutive models that must be employed in order to address
the complicated rheological behavior of normal blood are the
thixo-elasto-viscoplastic ones.32–36 However, in all these models,
the structural variables employed were not directly related to the
microstructural characteristics of blood. For example, Stephanou
and Georgiou33 had considered a contravariant conformation ten-
sor to characterize the deformation of the underlying structure,
whereas Tsimouri et al.,30 following Owens,29 modeled each rouleau
as an elastic dumbbell characterized by a contravariant confor-
mation tensor. Furthermore, all aforementioned models character-
ize the deformation of single RBCs using a spring, whereas it is
more natural, as described above, to model single RBCs as volume-
preserving droplets (when incompressibility applies). As such, and
despite the evidence highlighting the significance of accurately
predicting the deformability of RBCs, constitutive models prop-
erly accounting for the deformability of RBCs are absent in the
literature.

To remedy the latter shortcoming, we have recently proposed
a detailed model wherein RBCs are described by a conformation
tensor constrained to have a constant determinant, which has been
used in the past to model emulsions.37–41 However, that approach
can only address non-aggregating blood, which severely limits its
applicability. As mentioned in the Conclusions of Ref. 37, to account
for the aggregation of RBCs occurring in normal blood, we may
follow one of two possible methodologies: The first includes allow-
ing the RBCs to aggregate by considering a set of two-way aggre-
gation/disaggregation reactions, following our own recent work.30

Then, we may identify the structural variable for single RBCs to be
the determinant-conserving conformation tensor S introduced in
Ref. 37 instead of the unconstrained conformation tensor C(1) intro-
duced in Ref. 30. Despite the fact that this methodology would allow
us to address the deformability of RBCs and to properly address
the shear-rate dependency of the rouleaux size distribution func-
tion without phenomenological modeling, it would not allow for
the prediction of a yield stress. On the other hand, the second
methodology, which is the one to be followed in this work, follows
closely Stephanou and Georgiou33 and dictates the use of one addi-
tional scalar structural variable to properly characterize the network
formed by RBCs under small shear rates. However, contrary to the
work of Stephanou and Georgiou,33 we should herein consider a
determinant-constrained conformation tensor S.

In our present work, as in our previous works,30,33,37 we employ
the generalized bracket31 formalism of NET to derive the new
hemorheological model so as to properly address three key issues:
(a) the selection of the proper state variables, (b) the construction
of both the Poisson and dissipation brackets, and (c) the specifi-
cation of the system’s Hamiltonian. The use of a NET formalism
guarantees that the constitutive model will be, by construction, con-
sistent with the laws of thermodynamics.31,43–45 Up to date, NET
has been employed to address several micro-structured systems,
such as, but not limited to, liquid crystals,46,47 immiscible complex
fluids,38–41 blood,30,37 polymer melts and solutions,31,43–45,48–50 poly-
mer nanocomposites,51–54 micellar systems,55,56 drilling fluids,57 and
thixotropic fluids.33

The rest of the paper is organized as follows: in Sec. II, we
present the derivation of the new constitutive model by extend-
ing the one of Stephanou and Tsimouri37 and provide the gov-
erning equations in a non-dimensional form along with a detailed

description of the model parameters. We then proceed with Sec. III
where the parameterization of the new model is presented, followed
by a comparison against the experimental measurements of Sousa
et al.58 and Bureau et al.59 in Sec. IV. Our paper concludes with
Sec. V where we summarize our work and provide a brief discussion
of future plans.

II. DERIVATION OF THE NEW MODEL
A. The vector of state variables

We consider a homogeneous, isothermal, and incompress-
ible flow, meaning that both the total mass density, ρ, and the
entropy density (or temperature) are excluded from the vector of
state variables. Following previous works,37–41 in order to describe
the rheology and microstructure of RBC suspensions, we consider
RBCs as emulsions with droplet morphology by using a constrained
contravariant second-rank tensor, S̄, such that detS̄ is equal to
the volume of a RBC. We also define the dimensionless tensor S
= S̄/(det S̄)1/3 so that detS = 1. The square root of the eigenvalues
of the volume-preserving tensor S corresponds to the dimension-
less semi-axes of the RBCs, with the semi-axes having been made
dimensionless using the equilibrium RBC equivalent radius.37 The
simplest possible approximation to the shape of RBCs is spheroidal
(i.e., ellipsoids of which the lengths of two axes are the same) so
that at equilibrium the tensor S̄ is equal to diag[a2, a2, c2

], where
a and c are the principal semi-axes of the RBC (see Fig. 1 of Ref.
37), whose determinant is detS̄ = detS̄eq = a4c2

= [3VRBC/(4π)]2;
since the volume of a spheroid is VRBC = (4π/3)a2c, then Seq

= S̄eq/(det S̄eq)
1/3
= diag[(a/c)2/3, (a/c)2/3, (c/a)4/3

]. Consider-

ing the typical values 2a = 7.5 μm and VRBC = 90 μm3, we must
consider c = 3.06 μm.37 Next, to account for the tendency of
RBCs to aggregate in normal blood, we here employ one addi-
tional scalar structural variable, λ, to properly characterize the net-
work formed by RBCs under sufficiently small shear rates. When
the network is fully formed, then λ = 1, while in a completely
broken state, i.e., when only single RBCs remain, λ vanishes.21,33

Finally, we consider the momentum density M as the hydrody-
namic variable. Overall, the vector x of state variables is expressed
as x = {M, S, λ}.

B. The Hamiltonian of the system
The mechanical part of the system’s Hamiltonian is given by31

Hm = Ken(x) + A(x), (1)

where

Ken(x) = ∫
M2

2ρ
dV . (2)

The first term on the right-hand side of Eq. (1) represents the kinetic
energy of the system, Ken(x), given by Eq. (2), whereas A(x) repre-
sents the system’s Helmholtz free energy, for which we consider here
the following form:33,37

A(C, λ) = HtΓ∫ IC2 dV + HtΓ∫ (λ ln λ − λ + 1)dV , (3a)
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where IC2 is the second invariant of the tensor C such that S
= C ⋅ Seq ⇒ C = S ⋅ S−1

eq , i.e., Ceq = I (see Ref. 37), Ht is the hema-
tocrit, and Γ = Eeqγ/VRBC =

3
2(γ/c)[1 + (e−1

− e)tanh−1e] is the
surface energy density, where Eeq = 2πa2

[1 + (e−1
− e)tanh−1e] is

the spheroid surface area with e2 = 1 − (c/a)2, and γ is the surface
tension. The first integral in Eq. (3a) is the simplest possible expres-
sion for the interfacial energy of the RBC.37 Note that, in general,
this term should be a function of only the first two invariants of
C (since the third, the determinant, is constant), and more general
expressions could be used, such as the one proposed by Mwasame et
al.41 or the one proposed by Skalak et al.60 to specifically address the
deformation of the RBC membrane. Despite the availability of such
more elaborate free energy expressions, we choose to consider in our
present work the simplest possible expression. The second integral
indicates the ideal entropy of mixing for segments that are not asso-
ciated with the network with an extra term added to ensure that the
mixing free energy maximizes under no flow conditions, i.e., when
λ = 1.33 Following Mwasame et al.,41 the surface energy density for
spherical at equilibrium droplets is given as Γ = 3γ/R, where R is the
radius of the droplet. Considering that the value of the surface energy
density is in general applicable only for dilute RBC suspensions, we
here consider37

γ = f0γ0 ⇒ Γ = f0Γ0, Γ0 =
3γ0

R
, (3b)

where γ0 is the surface tension in infinite dilution. Although
Stephanou and Tsimouri37 had considered f 0 to be a function of var-
ious parameters to match the model prediction of the zero-rate shear
viscosity with the expected experimental result, here we choose to
consider it as an adjustable parameter since such a matching cannot
take place as the zero-rate shear viscosity of normal blood is difficult
to be measured.

C. The Poisson and dissipation brackets
Following Edwards et al.61 and Beris and Edwards,31 the

Volterra derivative of the constrained tensor S related to the uncon-
strained tensor B via S = B/(detB)1/3 is given as

δ
δBαβ

=
1

(det B)1/3 (δαμδβν −
1
3
SμνS−1

αβ)
δ

δSμν
. (4)

For a system described by an unconstrained conformation ten-
sor B, the expression for the Poisson bracket is well known (see, e.g.,
Refs. 31 and 43):

{F,G}B = −∫ [
δF
δMγ
∇β(Mγ

δG
δMβ
) −

δG
δMγ
∇β(Mγ

δF
δMβ
)]dV

− ∫ [
δF
δBαβ
∇γ(Bαβ

δG
δMγ
) −

δG
δBαβ
∇γ(Bαβ

δF
δMγ
)]dV

− ∫ Bαγ[
δG
δBαβ
∇γ(

δF
δMβ
) −

δF
δBαβ
∇γ(

δG
δMβ
)]dV

− ∫ Bβγ[
δG
δBαβ
∇γ(

δF
δMα
) −

δF
δBαβ
∇γ(

δG
δMα
)]dV . (5)

Note that here, and throughout this work, Einstein’s summation
convention for repeated Greek indices is employed. Then, by using

Eq. (4) in the Poisson bracket, we get31,37–41

{F,G}S = −∫ [
δF
δMγ
∇β(Mγ

δG
δMβ
) −

δG
δMγ
∇β(Mγ

δF
δMβ
)]dV

− ∫ [
δF
δSαβ

δG
δMγ
∇γSαβ −

δG
δSαβ

δF
δMγ
∇γSαβ]dV

− ∫ Sαγ[
δG
δSαβ
∇γ(

δF
δMβ
) −

δF
δSαβ
∇γ(

δG
δMβ
)]dV

− ∫ Sβγ[
δG
δSαβ
∇γ(

δF
δMα
) −

δF
δSαβ
∇γ(

δG
δMα
)]dV

+
1
3 ∫

SαβS
−1
ρη (

δG
δSαβ

δF
δMγ

−
δF
δSαβ

δG
δMγ
)∇γSρηdV

+
2
3 ∫

Sαβ[
δG
δSαβ
∇γ(

δF
δMγ
) −

δF
δSαβ
∇γ(

δG
δMγ
)]dV . (6a)

Furthermore, we consider the following expression for the Poisson
bracket associated with the scalar structural variable λ:33,43

{F,G}λ = −∫ [
δF
δλ
∇γ(λ

δG
δMγ
) −

δG
δλ
∇γ(λ

δF
δMγ
)]dV

− ∫ gγα[
δG
δλ
∇γ(

δF
δMα
) −

δF
δλ
∇γ(

δG
δMα
)]dV . (6b)

The last integral in Eq. (6b) introduces a general coupling between
the scalar structural variable and the velocity gradient through the
tensor g.43 The Poisson bracket of the system is then simply {F, G}
= {F, G}S + {F, G}λ.

Next, for the dissipative bracket, we again choose a form that is
frequently employed,31,33,37,43

[F,G]nec = −∫
δF
δBαβ

Λ̄αβγε
δG
δBγε

dV − ∫
δF
δλ

Λλ δG
δλ

dV

+ ∫ Lαβγε[
δF
δBγε
∇α(

δG
δMβ
) −

δG
δBγε
∇α(

δF
δMβ
)]

− ∫ ∇α(
δF
δMβ
)Qαβγε∇γ(

δG
δMε
)dV . (7)

The first two integrals on the right-hand side of Eq. (7) account for
relaxation effects for an unconstraint conformation tensor B, pro-
portional to a fourth-rank relaxation tensor Λ̄, and the scalar struc-
tural variable λ. The third integral will allow us to introduce RBC
tumbling by considering non-affine deformation,37 whereas the last
integral, proportional to the fourth-rank tensorQαβγε, aims to add an
additional Newtonian-like rheological contribution to the stress ten-
sor. Note that the subscript “nec,” meaning “no entropy production
correction,” is added to the dissipation bracket to indicate that this
dissipation bracket is without terms involving Volterra derivatives
with respect to the entropy density.31 These terms are unimportant
when one considers (as we do here) isothermal systems. Finally,
using Eq. (4), the corresponding terms of the dissipation bracket
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related to the determinant-constrained tensor S are obtained as

[F,G]nec = −∫ (δαμδβν −
1
3
SαβS

−1
μν )

δF
δSαβ

Λμνγε(δγρδεη −
1
3
SρηS−1

γε )

×
δG
δSρη

dV −∫
δF
δλ

Λλ δG
δλ

dV +∫ Lαβγε(δγμδεν −
1
3
SμνS−1

γε )

×[
δF
δSμν
∇α(

δG
δMβ
) −

δG
δSμν
∇α(

δF
δMβ
)]

− ∫ ∇α(
δF
δMβ
)Qαβγε∇γ(

δG
δMε
)dV , (8)

where Λαβγε = Λαβγε/(det B)2/3 and Lαβγε = Lαβγε/(detB)1/3.37 Then,

Ṡαβ,[1] = −(Λαβγε −
1
3
SαβS

−1
μνΛμνγε)(

δHm

δSγε
−

1
3
Sρη

δHm

δSρη
S−1
γε )

+(δαγδβε −
1
3
SαβS

−1
γε )Lμνγε∇μ

δHm

δMν
,

Dλ
Dt
≡
∂λ
∂t

+ uγ∇γλ = −Λλ δHm

δλ
+ κ : g, (9a)

where we have also defined the time derivative,

Ṡαβ,[1] ≡
∂Sαβ
∂t

+ uγ∇γSαβ − Sαγ∇γuβ −∇γuαSγβ +
2
3
Sαβ∇γuγ

+
1
3
SαβS

−1
ρη uγ∇γSρη (9b)

and the material time derivative,

Dλ
Dt
≡
∂λ
∂t

+ u ⋅ ∇λ. (9c)

Also, κ = (∇u)T is the transposed velocity gradient tensor. Finally,
the stress tensor is given as

σαβ = 2(Sβγ
δA
δSαγ

−
1
3
δαβSγε

δA
δSγε
) + Qαβγε∇γuε

+Lαβγε(δγμδεν −
1
3
SμνS−1

γε )
δA
δSμν

+ gαβ
δA
δλ

. (10)

In the following, we make the choice g = −λC that duly satisfies the
requirement that the Poisson bracket fulfills the Jacobi identity (see
pp. 113–115 of Ref. 43). We now consider the following choices for
the Q and L tensors:

Qαβγε = η∞(Ht, λη)(δαγδβε + δαεδβγ),

Lαβγε = −
ξ
2
(Sαγδβε + Sαεδβγ + Sβγδαε + Sβεδαγ).

(11)

The first expression includes the infinite-rate viscosity, i.e., the vis-
cosity of blood at large shear rates, which depends on both Ht and λη
via η∞ = ηsP(Ht,λη). In the dilute limit, this should be equal to the
expression due to Taylor,62

P(Ht, λη) = 1 + HtT(λη), T(λη) =
5λη + 2

2(λη + 1)
. (12)

However, we are here interested in larger (physiological) values of
the hematocrit, and thus, we need to employ a generalized version

of this expression. We do this by following Krieger and Dougherty63

(see also Refs. 8 and 53) by selecting

P(Ht, λη) = (1 −
Ht
Htm
)
−T(λη)Htm

, (13)

where Htm is the maximum packing hematocrit. Note that this
expression as Ht→ 0 boils down to Taylor’s expression. For random
close packing of monosized rigid spherical particles, the maximum
packing volume fraction is equal to 0.637; however, for spheroids,
such as RBCs, this is expected to be larger. Indeed, Donev et al.64

showed that the maximum packing volume fraction depends on the
object’s shape: for spheres, they found it to be 0.64, whereas for
oblate spheroids (M&M candies), it is 0.68. Motivated from this,
they performed computer simulations and noted that the maximum
packing volume fraction depends on the aspect ratio for both pro-
late and oblate spheroids. Since RBCs can be approximated as oblate
spheroids with a disk equal to approximately 2a = 6 μm–9 μm and
a thickest thickness between 2c = 1.84 μm and 2.84 μm, meaning
that the aspect ratio is between c/a ≈ 0.2 and 0.5, their simulation
results indicate that the maximum packing volume fraction should
be between 0.64 and 0.69. However, we should also consider the fact
that RBCs are deformable, which would suggest that Htm should be
even higher. This is verified by the rheological measurements of Tao
and Huang65 who showed that their measured data are in favor of
Eq. (13) with Htm = 0.72 and T(λη) = 2.3 that is reasonably close
to the value of ≈2.1667 obtained for the average value of λη = 5;
for completeness, we mention that the value T(λη) = 2.3 is obtained
when λη = 9 that is close to the upper limit of λη. In the following, we
will assume that Htm = 0.72 unless otherwise stated.

The second expression in Eq. (11) is the usual expression pro-
posed by Beris and Edwards,31 which gives rise to the Gordon–
Schowalter or Johnson–Segalman time derivative and has also been
employed by Mwasame et al.;41 ξ here is the non-affine or slip
parameter. This parameter has been related to chain tumbling (rota-
tion) in polymer melts and concentrated polymer solutions50 but
also to RBC tumbling.37 Therefore, when a non-vanishing non-
affine parameter is employed, the RBCs would at small shear rates
deform and, once a critical shear rate is exceeded, tumble at larger
shear rates, as noted experimentally. In general, its value should be
rather small. As also mentioned by Stephanou and Tsimouri,37 there
are no experimental evidence suggesting the consideration of a non-
vanishing value of ξ; however, Mwasame et al.41 have shown that, in
the case of spherical emulsions at equilibrium, this parameter must
be a specific function of the viscosity ratio λη in order for their model
to recover the asymptotic constitutive equations of up to first-order
capillary number microscopic theories. Although such theoretical
evidence is absent in the case of emulsions that are ellipsoidal at
equilibrium, as we approximate the simplest equilibrium shape of
RBCs, we still consider a non-vanishing non-affine parameter that,
however, we shall treat simply as a fitting constant. Finally, for the
relaxation tensor Λ and for Λλ, we consider the simplest possible
expressions,

Λαβγε =
3(1 − λ)
4IC2 ΓHtτS

(SαγSeq,βε + SαεSeq,βγ + SβγSeq,αε + SβεSeq,αγ),

Λλ
=

1
ΓHtτλ

,
(14)
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where τS is a characteristic relaxation time related to the deforma-
bility of the RBC37 and τλ is a characteristic relaxation time
related to how easily the RBC network can be reconstructed once
destroyed due to the applied stresses. Following Mwasame et al.,41 τS
= ηSR/γ0, where R = 3VRBC/Eeq is the equivalent RBC radius at
equilibrium.37

D. The resulting evolution equations
Following the usual procedure,31 we obtain the following

expressions for the evolution equations for the constrained confor-
mation tensor S and the scalar structural variable λ:

Ṡαβ,[JS] = −
3(1 − λ)
I2τS

[−(SαγS−1
eq,γζSζβ −

IC1
3
Sαβ) −

2IC2
3
(Seq,αβ −

IC2
3
Sαβ)],

Dλ
Dt
= −

1
τλ

ln λ − λκ : C,

(15a)
where the left-hand side defines the Johnson–Segalman time
derivative,

Ṡαβ,[JS] ≡ Ṡαβ,[1] +
ξ
2
(γ̇αγSγβ + Sαγγ̇γβ) −

ξ
3
Sαβtrγ̇, (15b)

and the expression for the extra stress tensor,

σαβ =
6ηs
τS

Htf0(1 − ξ)(IC1 SαγS
−1
eq,γβ − SαγS

−1
eq,γηSηζS

−1
eq,ζβ −

2IC2
3

δαβ)

−
3ηs
τS

Htf0Cαβ(λ ln λ) + η∞(Ht, λη)γ̇αβ. (16)

We select to make the stress tensor dimensionless with ηs/τs so that

σ̃αβ = 6Htf0(1 − ξ)(IC1 Cαβ − CαγCγβ −
2IC2
3

δαβ) − 3Htf0Cαβ(λ ln λ)

+P(Ht, λη)˜̇γαβ, (17)

where ˜̇γ = γ̇τs is the dimensionless rate-of-strain tensor. In the fol-
lowing, we will employ the dimensionless parameter ε = τλ/τS. As
will be shown, in the limit ε→∞, this model boils down to the one
presented by Stephanou and Tsimouri37 for non-aggregating blood.
As shown in the Appendix, the new model is thermodynamically
admissible. In the following, we consider only homogeneous and
rectilinear flows.

III. PREDICTIONS OF THE NEW MODEL
In this section, we present the predictions of the new model

in shear flow and how they compare with available experimental
data. The results have been obtained by numerically solving the
constitutive model [Eqs. (15a) and (15b)] using MATLAB.

A. Steady-state predictions
Figure 1 shows the variation of the relative infinite-rate viscos-

ity, η∞/ηs, given by Eq. (13), as a function of Ht for different values
of the parameters λη and Htm. When the ratio of the internal and
external viscosities, λη, increases, the relative viscosity curve shifts to
higher values, but as the maximum packing hematocrit is reached
this deviation diminishes. It should be noted that even the curve

FIG. 1. Theory predictions for the relative infinite-shear-viscosity, η∞/ηs, as a func-
tion of the hematocrit value given by Eq. (13) for various values of the parameters
λη and Htm.

as Ht → 0 shifts to larger Ht values as it follows Taylor’s theory:
P(Ht,λη) = 1 + HtT(λη), which is accurate up until, approximately,
Ht ≈ 0.1. On the other hand, by increasing the maximum packing
hematocrit, the predictions are noted to be the same up untilHt ≈ 0.4
and shift toward larger Ht values afterward. Overall, this behavior is
in accord with available rheological measurements.65

In Figs. 2 and 3, we depict the predictions for the dimensionless
shear stress [panel (a)] and shear viscosity [panel (b)], while keep-
ing λη = 2.5, Ht = 0.4, and Htm = 0.72 (Fig. 2) and ξ = 0.01 and Htm
= 0.72 (Fig. 3) fixed. We note in Fig. 2(a) that as the parameter ε
decreases, a yield stress, σy, is predicted at small shear rates, which
is seen to shift to larger values (see the inset). Obviously, in the limit
ε → ∞, the yield stress would vanish, and the model boils down to
the one presented by Stephanou and Tsimouri37 (see also Ref. 33).
On the other hand, by increasing the ξ parameter from 0.01 to 0.1
(which is admittedly a relatively large value), a slight shift to smaller
values for both the shear stress [Fig. 2(a)] and the shear viscosity
[Fig. 2(b)] at small shear rates is noted. Furthermore, by increas-
ing the parameter f 0, the yield shear stress is seen to increase; this
is the expected behavior as the exhibition of a yield stress originates
from the two first terms of Eq. (16). However, at large shear rates, all
curves, irrespective of the values of the parameters ξ and ε, asymp-
totically reach the Newtonian contribution P(Ht,λη)Ca [given by the
dotted line in panel (a)]. Overall, the shear stress is what we should
expect: a yield shear stress is predicted when a finite, non-vanishing ε
parameter is considered [Figs. 2(a) and 3(a)], as expected from rhe-
ological measurements of blood at physiological conditions,14–16,58

the dependence from the ξ parameter seems not to be significant but
it would be valuable in numerical simulations in order to consider
RBC tumbling (see also Fig. 6), and by increasing the value of the
hematocrit, the shear stress curve, and thus the viscosity curve as
well, shifts to larger values in agreement with the rheological data of
Chien et al.,14 whereas at large enough shear rates, the viscosity even-
tually reaches a second Newtonian plateau as dictated by numerous
rheological data.14–16,58

Then, in Figs. 4 and 5, we depict the model predictions for the
two dimensionless normal stress differences [panel (a)] and the two
dimensionless normal stress coefficients [panel (b)]. We note that in
addition to the prediction of a yield first normal stress difference,
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FIG. 2. Model predictions for the dimen-
sionless (a) shear stress and (b) shear
viscosity as a function of Ca for various
values of the parameters ξ, f 0, and ε,
while keeping λη = 2.5, Ht = 0.4, and
Htm = 0.72 fixed. The dotted line in panel
(a) depicts the Newtonian contribution of
P(Ht,λη)Ca.

FIG. 3. Model predictions for the dimen-
sionless (a) shear stress and (b) shear
viscosity as a function of Ca for various
values of the parameters ε, Ht, and λη
while keeping ξ = 0.01, f 0 = 1, and Htm

= 0.72 fixed.

FIG. 4. Model predictions for the dimen-
sionless (a) first normal stress difference
and (b) first normal stress coefficient as
a function of Ca for various values of the
parameters ξ and ε.

FIG. 5. Model predictions for the neg-
ative dimensionless (a) second normal
stress difference and (b) second normal
stress coefficient as a function of Ca
for various values of the parameters ξ
and ε.
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N1,y, when a finite value of the parameter ε is considered, a neg-
ative yield second normal stress difference, N2,y, is also predicted.
This is in disaccord with the model proposed by Stephanou and
Georgiou,33 wherein the second normal stress difference vanishes;
this result is a direct consequence of the constant-determinant con-
straint imposed on the conformation tensor S in the present work.
We note, as was the case for the shear stress [Figs. 2(a) and 3(a)]
and the shear viscosity [Figs. 2(b) and 3(b)], that by decreasing the
parameter ε, the yield values are noted to increase (in the limit-
ing case, when ε → ∞, no yield values are predicted). However,
the effect on N2 is noted to be more significant than that on N1:
when the parameter ξ is increased, the value of N1,y is only slightly
affected, whereas N1 at large shear rates is seen to decrease. On the
other hand, the increase of the parameter ξ shifts the whole-N2 curve
upwards. Unfortunately, given the absence of any rheological data
concerning the normal stresses of blood, we are not in a position of
judging as to whether these predictions are the expected ones. This
comment is not restricted only to blood as experimental rheologists
have routinely encountered problems in measuring normal stresses
in materials known to exhibit a yield shear stress. Only very recently
have novel experimental measurements of the yield normal stresses
taken place that highlight that not only yield normal stresses are not
negligibly small (with N1 > 0 and N2 < 0) but also are as important as
the yield shear stress.66,67 Overall, these recent experimental observa-
tions are in accord with the predictions presented above, albeit they
do not refer to blood.

B. Inception of simple shear flow

In Fig. 6, we provide the model predictions for the growth
of the dimensionless shear viscosity, (η+

− η∞)/(f 0Htηs), wherein
we have subtracted the infinite-rate viscosity [panel (a)], and the
dimensionless first, Ψ+

1/(f0Htηsτs) [panel (b)], and negative second,
−Ψ+

2/(f0Htηsτs) [panel (c)], normal stress coefficients as a function
of dimensionless time, t/τs, for Ca = 1 and 10, and various values
of the parameters. At the smaller shear rate (Ca = 1), the first nor-
mal stress coefficient is noted to approach its steady-state values
monotonically, whereas the shear viscosity and the second normal
stress coefficient are noted to go through an overshoot before they
reach their steady-state values, which becomes more pronounced by
decreasing ε and increasing ξ. Similar conclusions have been noted
in our previous model, i.e., when ε → ∞.37 On the other hand,
at larger shear rates (Ca = 10), we note that all material functions
are seen to undergo a dumping behavior, i.e., the appearance of an
undershoot following the overshoot, which is more intense in the
case of the shear viscosity and the second normal stress coefficient.
This behavior intensifies by increasing the value of the non-affine
parameter. As noted by Stephanou and Tsimouri,37 the occurrence
of this dumping behavior can be attributed, following similar under-
shoots appearing in the transient shear viscosity of concentrated
polymeric solutions,50,68,69 to the tumbling behavior of RBCs in sim-
ple shear, which has also been observed experimentally (see, e.g.,
Ref. 24 in Ref. 37). The appearance of such undershoots in the tran-

FIG. 6. Growth of the dimensionless (a)
shear viscosity, (b) first normal stress
coefficient, and (c) second normal stress
coefficient upon the inception of simple
shear flow at different Ca for various
values of the parameters ξ and ε.
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sient shear viscosity is in complete accord with recent rheological
data.35

IV. COMPARISON WITH EXPERIMENTAL DATA
Sousa et al.58 measured the shear stress of a donor’s blood for

a physiological Ht (41.6%). We consider the plasma viscosity to
be equal to ηs = 1.2 mPa s and the average value for the viscosity
ratio, i.e., λη = 5, meaning that T(λη) ≈ 2.1667; we further con-
sider Htm = 0.72. The remaining parameters (ξ = 0.01, ε = 5, f 0
= 1, and τS = 0.06 s) are obtained by simply fitting the model pre-
diction to the experimental data of Sousa et al.58 This comparison is
shown in Fig. 7 where we note that the model accurately predicts the
experimental data.

Finally, in Fig. 8, we compare the model prediction against the
rheological response of normal human blood to a step-change in
shear rate experiments (measurements were done at 25 ± 0.5 ○C)
reported by Bureau et al.:59 at rest, a shear rate equal to 1 s−1 is
applied, and after 8.5 s, the shear rate is suddenly reduced to zero.

FIG. 7. Comparison of the model predictions (red line) for the shear stress with the
experimental rheological data at T = 37 ○C (circles) of the blood of Donor A from
Sousa et al.58 with Ht = 0.416. Here, Htm = 0.72, ηs = 1.2 mPa s, λη = 5, ξ = 0.01,
ε = 5, f 0 = 1, and τS = 0.06 s.

FIG. 8. Comparison of the model predictions (continuous red line) with the experi-
mental step-change in shear rate data (dashed black line) of normal blood sample
5 of Bureau et al.59 at T = 25 ○C. Here, Ht = 0.45, Htm = 0.72, ηs = 1.8 mPa s, λη
= 5, ξ = 0.01, ε = 30, f 0 = 4.2, and τS = 1 s.

Given that the plasma viscosity at 20 ○C is equal to about 2 mPa
s70 and 1.2 mPa s at 37 ○C,6 via linear interpolation, we estimate its
value at 25 ○C to be about 1.8 mPa s. We will consider a hematocrit
equal to 0.45 (as Ref. 59 did not report it), λη = 5 meaning that T(λη)
≈ 2.1667, and Htm = 0.72. Then, considering ε = 30, f 0 = 4.2, and τS
= 1 s, a satisfactory agreement with the experimental data of Bureau
et al.59 is noted, although the height of the overshoot is not accurately
predicted.

V. CONCLUSIONS
In this work, we have derived a new hemorheological model

that addresses self-consistently both the aggregation and deforma-
tion of RBCs by extending our previous model wherein we con-
sidered only non-aggregating blood.37 Such an understanding is
paramount if we aspire to fully comprehend the rheological behavior
of blood in our circulation via the execution of in silico simula-
tions. To address the deformability of RBCs, since they are merely
droplets with the inner fluid exhibiting a higher viscosity than the
outer one, RBCs are considered to be described by a conformation
tensor constrained to have a constant determinant following our
recent work.37 Second, we have introduced additional contributions
that allow for the prediction of yield values for the shear stress and
the two normal stress differences. Since we develop our model in the
context of the generalized bracket formalism of NET,31 the incor-
poration of the various mechanisms into the constitutive model is
done without ambiguities; furthermore, the new model is shown
to be thermodynamically admissible (see the Appendix). This is an
especially important feature of our work that guarantees the internal
consistency of the final dynamical equations. We have shown that
the new model is able to accurately predict the rheological response
of normal (aggregating) blood: the steady-state shear viscosity as
measured by Sousa et al.58 (Fig. 7) and the transient shear viscosity
measured in step-change in shear-rate experiments by Bureau et al.59

(Fig. 8).
In addition to the prediction of a yield shear stress, our model

predicts yield normal stresses whose physicality cannot be currently
judged due to the unavailability of such measurements in the litera-
ture. Only recently has experimental evidence emerged highlighting
the significance of normal stresses at the yield point,66,67 leading to
the definition of a yield stress tensor.67 We note the overall quali-
tative agreement of our model predictions with these recent mea-
surements, but clearly an actual comparison cannot be attempted
as these measurements were made for other yield stress materials.
Given that, in addition to ours, other theoretical models predict non-
vanishing yield normal stresses,34,71 our work should act as a call-
ing to the experimental rheological community to be more actively
interested in measuring yield normal stresses in blood; such mea-
surements could have dire implications to the in silico modeling of
blood flow.

During the past few decades, drug-carrying, micro- or nano-
sized, particles have been used to provide promising and more effec-
tive alternative treatments, compared to traditional ones, to fight
several diseases. The execution of in silico trials (that is, the execu-
tion of clinical human trials in computers, i.e., on virtual patients)
of such treatments would allow for a faster and more economic
design of suitable drug-carrying particles. Given the thermodynamic
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nature of our current approach, it can be used in the future to
address the transport of drug-carrying particles in our circulation
and how this impacts blood rheology. This can be done by intro-
ducing one more structural variable, the so-called orientation tensor
that describes the average orientation of the particles, following pre-
vious works.51–54 The orientation tensor is constrained to have a
constant trace due to the rigidity of the particles considered. Thus,
the use of NET can accommodate the consistent incorporation of
the new structural variable and its proper coupling with the rest.
Such a modification of the present model, i.e., to account for parti-
cle advection in our circulation, is expected to be submitted soon for
publication.
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APPENDIX: THERMODYNAMIC ADMISSIBILITY
Any thermodynamic system must obey the restriction of a

non-negative total rate of entropy production. In the case the fluid
under study is isothermal and incompressible, the entropy produc-
tion results from the degradation of the mechanical energy leading
to dHm/dt = [Hm, Hm] ≤ 0.31 For this to be satisfied in our model, it
can be shown that the following condition must hold:

−[Hm,Hm] = ∫ ∇α(
δHm

δMβ
)Qαβγε∇γ(

δHm

δMε
) − ∫ Λλ

(
δHm

δλ
)

2

dV

+ ∫ (δαμδβν −
1
3
SαβS

−1
μν )

δHm

δSαβ

×Λμνγε(δγρδεη −
1
3
SρηS−1

γε )
δHm

δSρη
dV ≥ 0. (A1)

The first is easily shown to be

∫ ∇α(
δHm

δMβ
)Qαβγε∇γ(

δHm

δMε
) = ηsP(Ht, λη)γ̇ : γ̇ ≥ 0, (A2)

which holds true for a non-negative solvent viscosity and P(Ht,λη)
≥ 0; given the use of the particular choice Eq. (13), this condition is
satisfied. For the second expression, we only need to make sure that
Λλ
≥ 0, which, as can be seen from Eq. (14), is indeed satisfied given

the non-negativity of Γ, Ht, and τλ. Finally, for the third expression,
we have (see also Ref. 37)

(δαμδβν −
1
3
SαβS

−1
μν )

δHm

δSαβ
Λμνγε(δγρδεη −

1
3
SρηS−1

γε )
δHm

δSρη

=
3(1 − λ)HtΓ

τS

⎧⎪⎪
⎨
⎪⎪⎩

trC3
− trC2 +

2IC2
3
⎛

⎝

2(IC2 )
2

3
− IC1
⎞

⎠

⎫⎪⎪
⎬
⎪⎪⎭

. (A3)

As shown by Stephanou and Tsimouri,37 using the Caley–Hamilton
theorem, one can show that trC3

= (IC1 )
3
− 3IC1 I

C
2 + 3, and noting

that IC1 ≥ 3 and IC2 ≥ 3, then trC3
− trC2

≥ 0 and 2
3(I

C
2 )

2
− IC1 ≥ 3,

the fact that the parameters Γ, Ht, and τR are non-negative and that

0 ≤ λ ≤ 1 it is proven that dHm/dt = [Hm,Hm] ≤ 0. Finally, we need
not check whether the conformation tensor is positive-definite since,
in the particular application, its determinant is conserved (see also
Ref. 37).
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