Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/19364
Τίτλος: | Automating distributed tiered storage management in cluster computing | Συγγραφείς: | Herodotou, Herodotos Kakoulli, Elena |
Major Field of Science: | Natural Sciences | Field Category: | Computer and Information Sciences | Λέξεις-κλειδιά: | Hadoop;Distributed File System;Mapreduce | Ημερομηνία Έκδοσης: | 2020 | Πηγή: | Proceedings of the VLDB Endowment, 2020, vol. 13, no. 1, pp. 43-56 | Volume: | 13 | Issue: | 1 | Start page: | 43 | End page: | 56 | Περιοδικό: | Proceedings of the VLDB Endowment | Περίληψη: | Data-intensive platforms such as Hadoop and Spark are routinely used to process massive amounts of data residing on distributed le systems like HDFS. Increasing memory sizes and new hardware technologies (e.g., NVRAM, SSDs) have recently led to the introduction of storage tiering in such settings. However, users are now burdened with the additional complexity of managing the multiple storage tiers and the data residing on them while trying to optimize their workloads. In this paper, we develop a general framework for automatically moving data across the available storage tiers in distributed le systems. Moreover, we employ machine learning for tracking and predicting le access patterns, which we use to decide when and which data to move up or down the storage tiers for increasing system performance. Our approach uses incremental learning to dynamically rene the models with new le accesses, allowing them to naturally adjust and adapt to workload changes over time. Our extensive evaluation using realistic workloads derived from Facebook and CMU traces compares our approach with several other policies and showcases signicant bene ts in terms of both workload performance and cluster effciency. | Description: | Presented at 46th International Conference on Very Large Data Bases, 31 August - 4 September 2020, Japan | URI: | https://hdl.handle.net/20.500.14279/19364 | ISSN: | 21508097 | DOI: | 10.14778/3357377.3357381 | Rights: | This work is licensed under the Creative Commons AttributionNonCommercial-NoDerivatives 4.0 International License. Attribution-NonCommercial-NoDerivatives 4.0 International |
Type: | Article | Affiliation: | Cyprus University of Technology | Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
Αρχεία σε αυτό το τεκμήριο:
Αρχείο | Περιγραφή | Μέγεθος | Μορφότυπος | |
---|---|---|---|---|
3357377.3357381.pdf | Fulltext | 974.4 kB | Adobe PDF | Δείτε/ Ανοίξτε |
CORE Recommender
SCOPUSTM
Citations
14
checked on 6 Νοε 2023
WEB OF SCIENCETM
Citations
10
Last Week
1
1
Last month
1
1
checked on 29 Οκτ 2023
Page view(s) 50
318
Last Week
0
0
Last month
2
2
checked on 22 Δεκ 2024
Download(s)
85
checked on 22 Δεκ 2024
Google ScholarTM
Check
Altmetric
Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons