Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/19036
Τίτλος: AutoCache: Employing machine learning to automate caching in distributed file systems
Συγγραφείς: Herodotou, Herodotos 
Major Field of Science: Natural Sciences
Field Category: Computer and Information Sciences
Λέξεις-κλειδιά: Automated caching;Distributed file systems
Ημερομηνία Έκδοσης: 1-Ιου-2019
Πηγή: IEEE 35th International Conference on Data Engineering Workshops, 2019, 8-12 April, Macao, China
Conference: IEEE International Conference on Data Engineering Workshops 
Περίληψη: The use of computational platforms such as Hadoop and Spark is growing rapidly as a successful paradigm for processing large-scale data residing in distributed file systems like HDFS. Increasing memory sizes have recently led to the introduction of caching and in-memory file systems. However, these systems lack any automated caching mechanisms for storing data in memory. This paper presents AutoCache, a caching framework that automates the decisions for when and which files to store in, or remove from, the cache for increasing system performance. The decisions are based on machine learning models that track and predict file access patterns from evolving data processing workloads. Our evaluation using real-world workload traces from a Facebook production cluster compares our approach with several other policies and showcases significant benefits in terms of both workload performance and cluster efficiency.
URI: https://hdl.handle.net/20.500.14279/19036
ISSN: 978-1-7281-0890-2
Rights: © IEEE
Attribution-NonCommercial-NoDerivatives 4.0 International
Type: Conference Papers
Affiliation: Cyprus University of Technology 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

Page view(s) 20

307
Last Week
0
Last month
9
checked on 21 Νοε 2024

Google ScholarTM

Check


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons