Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/18532
Τίτλος: Latent geometry and dynamics of proximity networks
Συγγραφείς: Papadopoulos, Fragkiskos 
Flores, Marco Antonio Rodríguez 
Major Field of Science: Natural Sciences
Field Category: Computer and Information Sciences
Λέξεις-κλειδιά: Complex networks;Dynamics;Maximum likelihood estimation;Weight distributions;Proximity networks
Ημερομηνία Έκδοσης: 26-Νοε-2019
Πηγή: Physical Review E, 2019, vol. 100, no. 5, articl. no. 052313
Volume: 100
Issue: 5
Project: Network for sOcial compuTing REsearch (NOTRE) 
Περιοδικό: Physical Review E 
Περίληψη: Proximity networks are time-varying graphs representing the closeness among humans moving in a physical space. Their properties have been extensively studied in the past decade as they critically affect the behavior of spreading phenomena and the performance of routing algorithms. Yet the mechanisms responsible for their observed characteristics remain elusive. Here we show that many of the observed properties of proximity networks emerge naturally and simultaneously in a simple latent space network model, called dynamic-S1. The dynamic-S1 does not model node mobility directly but captures the connectivity in each snapshot - each snapshot in the model is a realization of the S1 model of traditional complex networks, which is isomorphic to hyperbolic geometric graphs. By forgoing the motion component the model facilitates mathematical analysis, allowing us to prove the contact, intercontact, and weight distributions. We show that these distributions are power laws in the thermodynamic limit with exponents lying within the ranges observed in real systems. Interestingly, we find that network temperature plays a central role in network dynamics, dictating the exponents of these distributions, the time-aggregated agent degrees, and the formation of unique and recurrent components. Further, we show that paradigmatic epidemic and rumor-spreading processes perform similarly in real and modeled networks. The dynamic-S1 or extensions of it may apply to other types of time-varying networks and constitute the basis of maximum likelihood estimation methods that infer the node coordinates and their evolution in the latent spaces of real systems.
URI: https://hdl.handle.net/20.500.14279/18532
ISSN: 24700053
DOI: 10.1103/PhysRevE.100.052313
Rights: © American Physical Society
Type: Article
Affiliation: Cyprus University of Technology 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

11
checked on 18 Μαρ 2024

WEB OF SCIENCETM
Citations

7
Last Week
0
Last month
0
checked on 29 Οκτ 2023

Page view(s)

429
Last Week
2
Last month
15
checked on 21 Νοε 2024

Google ScholarTM

Check

Altmetric


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons