Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/18088
Τίτλος: | Data-Driven Local Control Design for Active Distribution Grids Using Off-Line Optimal Power Flow and Machine Learning Techniques | Συγγραφείς: | Karagiannopoulos, Stavros Aristidou, Petros Hug, Gabriela |
Major Field of Science: | Engineering and Technology | Field Category: | Electrical Engineering - Electronic Engineering - Information Engineering | Λέξεις-κλειδιά: | Active distribution networks;Backward forward sweep power flow;Data-driven control design;decentralized control;distributed energy resources;machine learning;OPF | Ημερομηνία Έκδοσης: | 2-Νοε-2019 | Πηγή: | IEEE Transactions on Smart Grid, 2018, vol. 10, no. 6, pp.6461-6471 | Volume: | 10 | Issue: | 6 | Start page: | 6461 | End page: | 6471 | Περιοδικό: | IEEE Transactions on Smart Grid | Περίληψη: | The optimal control of distribution networks often requires monitoring and communication infrastructure, either centralized or distributed. However, most of the current distribution systems lack this kind of infrastructure and rely on suboptimal, fit-and-forget, local controls to ensure the security of the network. In this paper, we propose a data-driven algorithm that uses historical data, advanced optimization techniques, and machine learning methods, to design local controls that emulate the optimal behavior without the use of any communication. We demonstrate the performance of the optimized local control on a three-phase, unbalanced, low-voltage, distribution network. The results show that our data-driven methodology clearly outperforms standard industry local control and successfully imitates an optimal-power-flow-based control. | ISSN: | 19493053 | DOI: | 10.1109/TSG.2019.2905348 | Rights: | © IEEE | Type: | Article | Affiliation: | Leeds University ETH Zurich Cyprus University of Technology |
Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
Αρχεία σε αυτό το τεκμήριο:
Αρχείο | Περιγραφή | Μέγεθος | Μορφότυπος | |
---|---|---|---|---|
manuscript.pdf | 874.81 kB | Adobe PDF | Δείτε/ Ανοίξτε |
CORE Recommender
SCOPUSTM
Citations
100
checked on 14 Μαρ 2024
WEB OF SCIENCETM
Citations
74
Last Week
0
0
Last month
2
2
checked on 29 Οκτ 2023
Page view(s)
361
Last Week
0
0
Last month
27
27
checked on 14 Μαρ 2025
Download(s)
108
checked on 14 Μαρ 2025
Google ScholarTM
Check
Altmetric
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα