Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/17787
Τίτλος: Correcting Image Refraction: Towards Accurate Aerial Image-Based Bathymetry Mapping in Shallow Waters
Συγγραφείς: Agrafiotis, Panagiotis 
Karantzalos, K. 
Georgopoulos, Andreas 
Skarlatos, Dimitrios 
Major Field of Science: Engineering and Technology
Field Category: Electrical Engineering - Electronic Engineering - Information Engineering
Λέξεις-κλειδιά: Bathymetry;UAV;Aerial imagery;Seabed mapping;Coastal mapping;DSM;Refraction correction;SfM;Machine learning;Image correction
Ημερομηνία Έκδοσης: Ιαν-2020
Πηγή: Remote Sensing, 2020, vol. 12, no. 2
Volume: 12
Issue: 2
Περιοδικό: Remote Sensing 
Περίληψη: Although aerial image-based bathymetric mapping can provide, unlike acoustic or LiDAR (Light Detection and Ranging) sensors, both water depth and visual information, water refraction poses significant challenges for accurate depth estimation. In order to tackle this challenge, we propose an image correction methodology, which first exploits recent machine learning procedures that recover depth from image-based dense point clouds and then corrects refraction on the original imaging dataset. This way, the structure from motion (SfM) and multi-view stereo (MVS) processing pipelines are executed on a refraction-free set of aerial datasets, resulting in highly accurate bathymetric maps. Performed experiments and validation were based on datasets acquired during optimal sea state conditions and derived from four different test-sites characterized by excellent sea bottom visibility and textured seabed. Results demonstrated the high potential of our approach, both in terms of bathymetric accuracy, as well as texture and orthoimage quality.
Description: The article was funded by the “CUT Open Access Author Fund”
ISSN: 20724292
DOI: 10.3390/rs12020322
Rights: © by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license
Type: Article
Affiliation: Cyprus University of Technology 
National Technical University Of Athens 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΜέγεθοςΜορφότυπος
remotesensing.pdf19.52 MBAdobe PDFΔείτε/ Ανοίξτε
CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

48
checked on 6 Νοε 2023

WEB OF SCIENCETM
Citations

40
Last Week
0
Last month
3
checked on 29 Οκτ 2023

Page view(s) 50

349
Last Week
0
Last month
1
checked on 22 Δεκ 2024

Download(s)

156
checked on 22 Δεκ 2024

Google ScholarTM

Check

Altmetric


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons