Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/1771
Τίτλος: | Metareasoning and meta-level learning in a hybrid knowledge-based architecture | Συγγραφείς: | Christodoulou, Eleni Keravnou-Papailiou, Elpida |
Major Field of Science: | Engineering and Technology | Λέξεις-κλειδιά: | Computer science;Artificial intelligence;Breast--Cancer;Histology, Pathological;Expert systems (Computer science);Neural networks (Computer science) | Ημερομηνία Έκδοσης: | Οκτ-1998 | Πηγή: | Artificial intelligence in medicine, 1998, vol. 14, no. 1–2, pp. 53–81 | Volume: | 14 | Issue: | 1-2 | Start page: | 53 | End page: | 81 | Περιοδικό: | Artificial intelligence in medicine | Περίληψη: | Ahybrid knowledge-based architecture integrates different problem solvers for the same (sub)task through a control unit operating at a meta-level, the metareasoner, which coordinates the use of, and the communication between, the different problem solvers. A problem solver is defined to be an association between a knowledge intensive (sub)task, an inference mechanism and a knowledge domain view operated by the inference mechanism in order to perform the (sub)task. Important issues in a hybrid system are the metareasoning and learning aspects. Metareasoning encompasses the functions performed by the metareasoner, while learning reflects the ability of the system to evolve on the basis of its experiences in problem solving. Learning occurs at different levels, learning at the meta-level and learning at the level of the specific problem solvers. Meta-level learning reflects the ability of the metareasoner to improve the overall performance of the hybrid system by improving the efficiency of meta-level tasks. Meta-level tasks include the initial planning of problem solving strategies and the dynamic adaptation of chosen strategies depending on new events occurring dynamically during problem solving. In this paper we concentrate on metareasoning and meta-level learning in the context of a hybrid architecture. The theoretical arguments presented in the paper are demonstrated in practice through a hybrid knowledge-based prototype system for the domain of breast cancer histopathology | URI: | https://hdl.handle.net/20.500.14279/1771 | ISSN: | 09333657 | DOI: | 10.1016/S0933-3657(98)00016-5 | Rights: | © Elsevier | Type: | Article | Affiliation: | University of Cyprus | Affiliation: | University of Cyprus |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
8
checked on 9 Νοε 2023
WEB OF SCIENCETM
Citations
9
Last Week
0
0
Last month
0
0
checked on 29 Οκτ 2023
Page view(s) 20
505
Last Week
1
1
Last month
3
3
checked on 22 Δεκ 2024
Google ScholarTM
Check
Altmetric
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα