Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/1711
Τίτλος: Hidden Markov models with nonelliptically contoured state densities
Συγγραφείς: Chatzis, Sotirios P. 
Major Field of Science: Engineering and Technology
Field Category: Computer and Information Sciences
Λέξεις-κλειδιά: Expectation-maximization;Hidden Markov models;Multivariate normal inverse Gaussian (MNIG) distribution;Sequential data modeling
Ημερομηνία Έκδοσης: 2010
Πηγή: IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, vol. 32, no. 12, pp. 2297-2304
Volume: 32
Issue: 12
Start page: 2297
End page: 2304
Περιοδικό: IEEE Transactions on Pattern Analysis and Machine Intelligence 
Περίληψη: Hidden Markov models (HMMs) are a popular approach for modeling sequential data comprising continuous attributes. In such applications, the observation emission densities of the HMM hidden states are typically modeled by means of elliptically contoured distributions, usually multivariate Gaussian or Student's-t densities. However, elliptically contoured distributions cannot sufficiently model heavy-tailed or skewed populations which are typical in many fields, such as the financial and the communication signal processing domain. Employing finite mixtures of such elliptically contoured distributions to model the HMM state densities is a common approach for the amelioration of these issues. Nevertheless, the nature of the modeled data often requires postulation of a large number of mixture components for each HMM state, which might have a negative effect on both model efficiency and the training data set's size required to avoid overfitting. To resolve these issues, in this paper, we advocate for the utilization of a nonelliptically contoured distribution, the multivariate normal inverse Gaussian (MNIG) distribution, for modeling the observation densities of HMMs. As we experimentally demonstrate, our selection allows for more effective modeling of skewed and heavy-tailed populations in a simple and computationally efficient manner
URI: https://hdl.handle.net/20.500.14279/1711
ISSN: 19393539
DOI: 10.1109/TPAMI.2010.153
Rights: © IEEE
Type: Article
Affiliation: Imperial College London 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

18
checked on 9 Νοε 2023

WEB OF SCIENCETM
Citations 1

14
Last Week
0
Last month
0
checked on 29 Οκτ 2023

Page view(s)

496
Last Week
0
Last month
3
checked on 29 Ιαν 2025

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα