Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/1643
Τίτλος: The infinite hidden Markov random field model
Συγγραφείς: Tsechpenakis, Gabriel 
Chatzis, Sotirios P. 
Major Field of Science: Engineering and Technology
Field Category: Electrical Engineering - Electronic Engineering - Information Engineering
Λέξεις-κλειδιά: Bayesian inference;FDirichlet process;Hidden Markov random field;Nonparametric models
Ημερομηνία Έκδοσης: Ιου-2010
Πηγή: IEEE transactions on neural networks, 2010, vol. 21, no. 6, pp. 1004-1014
Volume: 21
Issue: 6
Start page: 1004
End page: 1014
Περιοδικό: IEEE Transactions on Neural Networks 
Περίληψη: Hidden Markov random field (HMRF) models are widely used for image segmentation, as they appear naturally in problems where a spatially constrained clustering scheme is asked for. A major limitation of HMRF models concerns the automatic selection of the proper number of their states, i.e., the number of region clusters derived by the image segmentation procedure. Existing methods, including likelihood- or entropy-based criteria, and reversible Markov chain Monte Carlo methods, usually tend to yield noisy model size estimates while imposing heavy computational requirements. Recently, Dirichlet process (DP, infinite) mixture models have emerged in the cornerstone of nonparametric Bayesian statistics as promising candidates for clustering applications where the number of clusters is unknown a priori; infinite mixture models based on the original DP or spatially constrained variants of it have been applied in unsupervised image segmentation applications showing promising results. Under this motivation, to resolve the aforementioned issues of HMRF models, in this paper, we introduce a nonparametric Bayesian formulation for the HMRF model, the infinite HMRF model, formulated on the basis of a joint Dirichlet process mixture (DPM) and Markov random field (MRF) construction. We derive an efficient variational Bayesian inference algorithm for the proposed model, and we experimentally demonstrate its advantages over competing methodologies
URI: https://hdl.handle.net/20.500.14279/1643
ISSN: 10459227
DOI: 10.1109/TNN.2010.2046910
Rights: © IEEE
Type: Article
Affiliation: University of Miami 
Cyprus University of Technology 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

53
checked on 9 Νοε 2023

WEB OF SCIENCETM
Citations

45
Last Week
0
Last month
0
checked on 29 Οκτ 2023

Page view(s)

485
Last Week
1
Last month
7
checked on 27 Ιαν 2025

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα