Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/1567
Τίτλος: Robust fuzzy clustering using mixtures of Student’s-t distributions
Συγγραφείς: Dr Chatzis, Sotirios P. 
Varvarigou, Theodora 
Major Field of Science: Engineering and Technology
Field Category: Electrical Engineering - Electronic Engineering - Information Engineering
Λέξεις-κλειδιά: Pattern recognition;Fuzzy systems;Algorithms;Mixtures;Students
Ημερομηνία Έκδοσης: Οκτ-2008
Πηγή: Pattern recognition letters, 2008, vol. 29, no. 13, pp. 1901–1905
Volume: 29
Issue: 13
Start page: 1901
End page: 1905
Περιοδικό: Pattern Recognition Letters 
Περίληψη: In this paper, we propose a robust fuzzy clustering algorithm, based on a fuzzy treatment of finite mixtures of multivariate Student’s-t distributions, using the fuzzy c-means (FCM) algorithm. As we experimentally demonstrate, the proposed algorithm, by incorporating the assumptions about the probabilistic nature of the clusters being dirived into the fuzzy clustering procedure, allows for the exploitation of the hard tails of the multivariate Student’s-t distribution, to obtain a robust to outliers fuzzy clustering algorithm, offering increased clustering performance comparing to existing FCM-based algorithms. Our experimental results prove that the proposed fuzzy treatment of finite mixtures of Student’s-t distributions is more effective comparing to their statistical treatments using EM-type algorithms, while imposing comparable computational loads
URI: https://hdl.handle.net/20.500.14279/1567
ISSN: 01678655
DOI: 10.1016/j.patrec.2008.06.013
Rights: © Elsevier
Type: Article
Affiliation: National Technical University Of Athens 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα