Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/14864
Τίτλος: | Improving the prediction of Pseudomonas putida mt-2 growth kinetics with the use of a gene expression regulation model of the TOL plasmid | Συγγραφείς: | Koutinas, Michalis Kiparissides, Alexandros Lam, Ming Chi Silva-Rocha, Rafael Godinho, Miguel de Lorenzo, Victor Martins dos Santos, Vitor A.P. Pistikopoulos, Efstratios N. Mantalaris, Athanasios A. |
Major Field of Science: | Natural Sciences | Field Category: | Biological Sciences | Λέξεις-κλειδιά: | Dynamic modelling;PWW0 (TOL) plasmid;Genetic circuit;Pseudomonas putida;M-Xylene | Ημερομηνία Έκδοσης: | 15-Ιου-2011 | Πηγή: | Biochemical Engineering Journal, 2011, vol. 55, no. 2, pp. 108-118 | Volume: | 55 | Issue: | 2 | Start page: | 108 | End page: | 118 | Περιοδικό: | Biochemical Engineering Journal | Περίληψη: | The molecular and genetic events responsible for the growth kinetics of a microorganism can be extensively influenced by the presence of mixtures of substrates leading to unusual growth patterns, which cannot be accurately predicted by mathematical models developed using analogies to enzyme kinetics. Towards this end, we have combined a dynamic mathematical model of the Ps/. Pr promoters of the TOL (pWW0) plasmid of Pseudomonas putida mt-2, involved in the metabolism of m-xylene, with the growth kinetics of the microorganism to predict the biodegradation of m-xylene and succinate in batch cultures. The substrate interactions observed in mixed-substrate experiments could not be accurately described by models without directly specifying the type of interaction even when accounting for enzymatic interactions. The structure of the genetic circuit-growth kinetic model was validated with batch cultures of mt-2 fed with m-xylene and succinate and its predictive capability was confirmed by successfully predicting independent sets of experimental data. Our combined genetic circuit-growth kinetic modelling approach exemplifies the critical importance of the molecular interactions of key genetic circuits in predicting unusual growth patterns. Such strategy is more suitable in describing bioprocess performance, which current models fail to predict. | URI: | https://hdl.handle.net/20.500.14279/14864 | ISSN: | 1369703X | DOI: | 10.1016/j.bej.2011.03.012 | Rights: | © Elsevier | Type: | Article | Affiliation: | Imperial College London Helmholtz Center for Infection Research Centro Nacional de Biotecnología Wageningen University Cyprus University of Technology |
Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
12
checked on 9 Νοε 2023
WEB OF SCIENCETM
Citations
10
Last Week
0
0
Last month
0
0
checked on 29 Οκτ 2023
Page view(s)
320
Last Week
1
1
Last month
2
2
checked on 6 Νοε 2024
Google ScholarTM
Check
Altmetric
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα