Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/14407
Τίτλος: | Prediction and simulation in categorical fields: A transition probability combination approach | Συγγραφείς: | Cao, Guofeng Kyriakidis, Phaedon Goodchild, Michael F. |
Major Field of Science: | Engineering and Technology | Field Category: | Civil Engineering | Λέξεις-κλειδιά: | Categorical data;Conditional independence;Tau model | Ημερομηνία Έκδοσης: | 1-Δεκ-2009 | Πηγή: | 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM SIGSPATIAL GIS 2009, Seattle, WA, United States, 4 November 2009 through 6 November 2009 | Conference: | ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems | Περίληψη: | The investigation of spatial patterns implied in categorical spatial data, such as land use and land cover (LULC) classes and socio-economic statistics data, is involved in many aspects of geographical information science, such as spatial uncertainty modeling and spatial data mining. The discrete nature of categorical fields limits the application of traditional analytical methods, such as kriging-type algorithms, widely used in Gaussian random fields. This paper presents a new probabilistic method for modeling the posterior probabilities of class occurrence at any location in space given known class labels at data locations within a neighborhood around that prediction location. In the proposed method, the conditional or posterior (multi-point) probabilities are approximated by weighted combinations of pre-posterior (two-point) transition probabilities (rather than indicator covariances or vari-ograms) while accounting for spatial interdependencies that most of current approaches often ignore. Using sequential indicator simulation based on the properties of a truncated multi-variate Gaussian field as reference, the advantages and disadvantages of this new proposed approach are analyzed and highlighted. Copyright 2009 ACM. | Description: | GIS: Proceedings of the ACM International Symposium on Advances in Geographic Information Systems 2009, Pages 496-499 | URI: | https://hdl.handle.net/20.500.14279/14407 | ISBN: | 978-160558649-6 | DOI: | 10.1145/1653771.1653853 | Type: | Conference Papers | Affiliation: | University of California | Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation |
CORE Recommender
SCOPUSTM
Citations
20
4
checked on 14 Μαρ 2024
Page view(s) 20
261
Last Week
0
0
Last month
4
4
checked on 6 Νοε 2024
Google ScholarTM
Check
Altmetric
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα