Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/14407
DC FieldValueLanguage
dc.contributor.authorCao, Guofeng-
dc.contributor.authorKyriakidis, Phaedon-
dc.contributor.authorGoodchild, Michael F.-
dc.date.accessioned2019-07-09T08:08:26Z-
dc.date.available2019-07-09T08:08:26Z-
dc.date.issued2009-12-01-
dc.identifier.citation17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM SIGSPATIAL GIS 2009, Seattle, WA, United States, 4 November 2009 through 6 November 2009en_US
dc.identifier.isbn978-160558649-6-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/14407-
dc.descriptionGIS: Proceedings of the ACM International Symposium on Advances in Geographic Information Systems 2009, Pages 496-499en_US
dc.description.abstractThe investigation of spatial patterns implied in categorical spatial data, such as land use and land cover (LULC) classes and socio-economic statistics data, is involved in many aspects of geographical information science, such as spatial uncertainty modeling and spatial data mining. The discrete nature of categorical fields limits the application of traditional analytical methods, such as kriging-type algorithms, widely used in Gaussian random fields. This paper presents a new probabilistic method for modeling the posterior probabilities of class occurrence at any location in space given known class labels at data locations within a neighborhood around that prediction location. In the proposed method, the conditional or posterior (multi-point) probabilities are approximated by weighted combinations of pre-posterior (two-point) transition probabilities (rather than indicator covariances or vari-ograms) while accounting for spatial interdependencies that most of current approaches often ignore. Using sequential indicator simulation based on the properties of a truncated multi-variate Gaussian field as reference, the advantages and disadvantages of this new proposed approach are analyzed and highlighted. Copyright 2009 ACM.en_US
dc.language.isoenen_US
dc.subjectCategorical dataen_US
dc.subjectConditional independenceen_US
dc.subjectTau modelen_US
dc.titlePrediction and simulation in categorical fields: A transition probability combination approachen_US
dc.typeConference Papersen_US
dc.collaborationUniversity of Californiaen_US
dc.subject.categoryCivil Engineeringen_US
dc.countryUnited Statesen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.relation.conferenceACM SIGSPATIAL International Conference on Advances in Geographic Information Systemsen_US
dc.identifier.doi10.1145/1653771.1653853en_US
dc.identifier.scopus2-s2.0-74049106930en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/74049106930en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
cut.common.academicyear2009-2010en_US
item.grantfulltextnone-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.openairetypeconferenceObject-
item.fulltextNo Fulltext-
crisitem.author.deptDepartment of Civil Engineering and Geomatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0003-4222-8567-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 20

4
checked on Mar 14, 2024

Page view(s) 20

261
Last Week
0
Last month
4
checked on Nov 6, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.