Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/14397
Τίτλος: Error in a USGS 30-meter digital elevation model and its impact on terrain modeling
Συγγραφείς: Kyriakidis, Phaedon 
Chadwick, O. A. 
Holmes, K. W. 
metadata.dc.contributor.other: Κυριακίδης, Φαίδων
Major Field of Science: Engineering and Technology
Field Category: Civil Engineering
Λέξεις-κλειδιά: Digital simulation;Digital terrain models;Geostatistics;Global positioning systems;Spatial distribution;Uncertainty
Ημερομηνία Έκδοσης: 12-Ιου-2000
Πηγή: Journal of Hydrology, 2000, vol. 233, no. 1-4, pp. 154-173
Volume: 233
Issue: 1-4
Start page: 154
End page: 173
Περιοδικό: Journal of Hydrology 
Περίληψη: Calculations based on US Geological Survey (USGS) digital elevation models (DEMs) inherit any errors associated with that particular representation of topography. We investigated the potential impact of error in a USGS 30 m DEM on terrain analysis over 27 km2. The difference in elevation between 2652 differential Global Positioning Systems measurements and USGS 30-m DEM derived elevations provided the comparative error dataset. Analysis of this comparative error data suggested that although the global (average) error is small, local error values can be large, and also spatially correlated. Stochastic conditional simulation was used to generate multiple realizations of the DEM error surface that reproduce the error measurements at their original locations and sample statistics such as the histogram and semivariogram model. The differences between these alternative error surfaces provide a model of uncertainty for the unknown DEM error spatial distribution. These DEM errors had a significant impact on terrain attributes which compound elevation values of many grid cells (e.g. slope, wetness index, etc.). A case study using terrain modeling demonstrates that the result of error propagation is most dramatic in valley bottoms and along streamlines. (C) 2000 Elsevier Science B.V.
URI: https://hdl.handle.net/20.500.14279/14397
ISSN: 221694
DOI: 10.1016/S0022-1694(00)00229-8
Rights: © Elsevier
Attribution-NonCommercial-NoDerivs 3.0 United States
Type: Article
Affiliation: University of California 
Stanford University 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

247
checked on 14 Μαρ 2024

WEB OF SCIENCETM
Citations

208
Last Week
0
Last month
1
checked on 29 Οκτ 2023

Page view(s)

229
Last Week
0
Last month
1
checked on 4 Δεκ 2024

Google ScholarTM

Check

Altmetric


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons