Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/14217
Τίτλος: Conserved charges in (Lovelock) gravity in first order formalism
Συγγραφείς: Gravanis, Elias 
Major Field of Science: Engineering and Technology
Field Category: Civil Engineering
Λέξεις-κλειδιά: Gravitation;Algebra;Cosmological constant
Ημερομηνία Έκδοσης: 6-Απρ-2010
Πηγή: Physical Review D - Particles, Fields, Gravitation and Cosmology, 2010, vol. 81, no. 8
Volume: 81
Issue: 8
Περιοδικό: Physical Review D 
Περίληψη: We derive conserved charges as quasi-local Hamiltonians by covariant phase space methods for a class of geometric Lagrangians that can be written in terms of the spin connection, the vielbein and possibly other tensorial form fields, allowing also for non-zero torsion. We then re-calculate certain known results and derive some new ones in three to six dimensions hopefully enlightening certain aspects of all of them. The quasi-local energy is defined in terms of the metric and not its first derivatives, requiring `regularization' for convergence in most cases. Counter-terms consistent with Dirichlet boundary conditions in first order formalism are shown to be an efficient way to remove divergencies and derive the values of conserved charges, the clear-cut application being metrics with AdS (or dS) asymptotics. The emerging scheme is: all is required to remove the divergencies of a Lovelock gravity is a boundary Lovelock gravity.
ISSN: 24700029
DOI: 10.1103/PhysRevD.81.084013
Rights: © The American Physical Society
Type: Article
Affiliation: Cyprus University of Technology 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

6
checked on 14 Μαρ 2024

WEB OF SCIENCETM
Citations

6
Last Week
0
Last month
0
checked on 29 Οκτ 2023

Page view(s) 50

443
Last Week
0
Last month
3
checked on 22 Δεκ 2024

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα