Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/13900
Τίτλος: | Hyperbolic geometry of complex networks | Συγγραφείς: | Krioukov, Dmitri Boguñá, Marián Vahdat, Amin Papadopoulos, Fragkiskos Kitsak, Maksim A. |
Major Field of Science: | Engineering and Technology | Field Category: | Electrical Engineering - Electronic Engineering - Information Engineering | Λέξεις-κλειδιά: | Models;Complex networks;Preferential attachment | Ημερομηνία Έκδοσης: | 9-Σεπ-2010 | Πηγή: | Physical Review E, 2010, vol. 82, no. 3 | Volume: | 82 | Issue: | 3 | Περιοδικό: | Physical Review E | Περίληψη: | We develop a geometric framework to study the structure and function of complex networks. We assume that hyperbolic geometry underlies these networks, and we show that with this assumption, heterogeneous degree distributions and strong clustering in complex networks emerge naturally as simple reflections of the negative curvature and metric property of the underlying hyperbolic geometry. Conversely, we show that if a network has some metric structure, and if the network degree distribution is heterogeneous, then the network has an effective hyperbolic geometry underneath. We then establish a mapping between our geometric framework and statistical mechanics of complex networks. This mapping interprets edges in a network as noninteracting fermions whose energies are hyperbolic distances between nodes, while the auxiliary fields coupled to edges are linear functions of these energies or distances. The geometric network ensemble subsumes the standard configuration model and classical random graphs as two limiting cases with degenerate geometric structures. Finally, we show that targeted transport processes without global topology knowledge, made possible by our geometric framework, are maximally efficient, according to all efficiency measures, in networks with strongest heterogeneity and clustering, and that this efficiency is remarkably robust with respect to even catastrophic disturbances and damages to the network structure. © 2010 The American Physical Society. | ISSN: | 24700053 | DOI: | 10.1103/PhysRevE.82.036106 | Rights: | © The American Physical Society | Type: | Article | Affiliation: | University of California, San Diego University of Cyprus Universitat de Barcelona Cyprus University of Technology |
Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
Αρχεία σε αυτό το τεκμήριο:
Αρχείο | Περιγραφή | Μέγεθος | Μορφότυπος | |
---|---|---|---|---|
hyperbolic geometry.pdf | 4.52 MB | Adobe PDF | Δείτε/ Ανοίξτε |
CORE Recommender
SCOPUSTM
Citations
693
checked on 14 Μαρ 2024
WEB OF SCIENCETM
Citations
521
Last Week
0
0
Last month
5
5
checked on 29 Οκτ 2023
Page view(s)
455
Last Week
5
5
Last month
12
12
checked on 3 Φεβ 2025
Download(s)
91
checked on 3 Φεβ 2025
Google ScholarTM
Check
Altmetric
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα