Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/1388
Τίτλος: | Development of a neural network-based fault diagnostic system for solar thermal applications | Συγγραφείς: | Kalogirou, Soteris A. Lalot, Sylvain Florides, Georgios A. Desmet, Bernard |
Major Field of Science: | Engineering and Technology | Field Category: | Environmental Engineering | Λέξεις-κλειδιά: | Fault diagnostic system;Artificial Neural Networks (ANN);Solar water heating systems | Ημερομηνία Έκδοσης: | Φεβ-2008 | Πηγή: | Solar Energy, 2008, vol. 82, no. 2, pp. 164-172 | Volume: | 82 | Issue: | 2 | Start page: | 164 | End page: | 172 | Περιοδικό: | Solar Energy | Περίληψη: | The objective of this work is to present the development of an automatic solar water heater (SWH) fault diagnosis system (FDS). The FDS system consists of a prediction module, a residual calculator and the diagnosis module. A data acquisition system measures the temperatures at four locations of the SWH system and the mean storage tank temperature. In the prediction module a number of artificial neural networks (ANN) are used, trained with values obtained from a TRNSYS model of a fault-free system operated with the typical meteorological year (TMY) for Nicosia, Cyprus and Paris, France. Thus, the neural networks are able to predict the fault-free temperatures under different environmental conditions. The input data to the ANNs are various weather parameters, the incidence angle, flow condition and one input temperature. The residual calculator receives both the current measurement data from the data acquisition system and the fault-free predictions from the prediction module. The system can predict three types of faults; collector faults and faults in insulation of the pipes connecting the collector with the storage tank and these are indicated with suitable labels. The system was validated by using input values representing various faults of the system. | URI: | https://hdl.handle.net/20.500.14279/1388 | ISSN: | 0038092X | DOI: | 10.1016/j.solener.2007.06.010 | Rights: | © Elsevier 2007 | Type: | Article | Affiliation: | Higher Technical Institute Cyprus University of Valenciennes and Hainaut-Cambresis |
Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
41
checked on 9 Νοε 2023
WEB OF SCIENCETM
Citations
20
32
Last Week
0
0
Last month
0
0
checked on 29 Οκτ 2023
Page view(s)
550
Last Week
9
9
Last month
2
2
checked on 16 Φεβ 2025
Google ScholarTM
Check
Altmetric
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα