Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/13464
Τίτλος: | Impact of dehazing on underwater marker detection for augmented reality | Συγγραφείς: | Žuži, Marek Čejka, Jan Bruno, Fabio Skarlatos, Dimitrios Liarokapis, Fotis |
Major Field of Science: | Natural Sciences | Field Category: | Computer and Information Sciences | Λέξεις-κλειδιά: | Augmented reality;Dehazing;Image restoration;Markers;Tracking;Underwater images | Ημερομηνία Έκδοσης: | 1-Αυγ-2018 | Πηγή: | Frontiers Robotics AI, 2018, vol. 5, no. AUG | Volume: | 5 | Issue: | AUG | Περιοδικό: | Frontiers Robotics AI | Περίληψη: | Underwater augmented reality is a very challenging task and amongst several issues, one of the most crucial aspects involves real-time tracking. Particles present in water combined with the uneven absorption of light decrease the visibility in the underwater environment. Dehazing methods are used in many areas to improve the quality of digital image data that is degraded by the influence of the environment. This paper describes the visibility conditions affecting underwater scenes and shows existing dehazing techniques that successfully improve the quality of underwater images. Four underwater dehazing methods are selected for evaluation of their capability of improving the success of square marker detection in underwater videos. Two reviewed methods represent approaches of image restoration: Multi-Scale Fusion, and Bright Channel Prior. Another two methods evaluated, the Automatic Color Enhancement and the Screened Poisson Equation, are methods of image enhancement. The evaluation uses diverse test data set to evaluate different environmental conditions. Results of the evaluation show an increased number of successful marker detections in videos pre-processed by dehazing algorithms and evaluate the performance of each compared method. The Screened Poisson method performs slightly better to other methods across various tested environments, while Bright Channel Prior and Automatic Color Enhancement shows similarly positive results. | ISSN: | 22969144 | DOI: | 10.3389/frobt.2018.00092 | Rights: | © Žuži, Čejka, Bruno, Skarlatos and Liarokapis. | Type: | Article | Affiliation: | Masaryk University University of Calabria Cyprus University of Technology |
Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
Αρχεία σε αυτό το τεκμήριο:
Αρχείο | Περιγραφή | Μέγεθος | Μορφότυπος | |
---|---|---|---|---|
frobt-05-00092.pdf | Fulltext | 2.79 MB | Adobe PDF | Δείτε/ Ανοίξτε |
CORE Recommender
SCOPUSTM
Citations
13
checked on 6 Νοε 2023
WEB OF SCIENCETM
Citations
6
Last Week
0
0
Last month
0
0
checked on 29 Οκτ 2023
Page view(s)
373
Last Week
0
0
Last month
0
0
checked on 6 Νοε 2024
Download(s)
91
checked on 6 Νοε 2024
Google ScholarTM
Check
Altmetric
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα