Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/13464
Τίτλος: Impact of dehazing on underwater marker detection for augmented reality
Συγγραφείς: Žuži, Marek 
Čejka, Jan 
Bruno, Fabio 
Skarlatos, Dimitrios 
Liarokapis, Fotis 
Major Field of Science: Natural Sciences
Field Category: Computer and Information Sciences
Λέξεις-κλειδιά: Augmented reality;Dehazing;Image restoration;Markers;Tracking;Underwater images
Ημερομηνία Έκδοσης: 1-Αυγ-2018
Πηγή: Frontiers Robotics AI, 2018, vol. 5, no. AUG
Volume: 5
Issue: AUG
Περιοδικό: Frontiers Robotics AI 
Περίληψη: Underwater augmented reality is a very challenging task and amongst several issues, one of the most crucial aspects involves real-time tracking. Particles present in water combined with the uneven absorption of light decrease the visibility in the underwater environment. Dehazing methods are used in many areas to improve the quality of digital image data that is degraded by the influence of the environment. This paper describes the visibility conditions affecting underwater scenes and shows existing dehazing techniques that successfully improve the quality of underwater images. Four underwater dehazing methods are selected for evaluation of their capability of improving the success of square marker detection in underwater videos. Two reviewed methods represent approaches of image restoration: Multi-Scale Fusion, and Bright Channel Prior. Another two methods evaluated, the Automatic Color Enhancement and the Screened Poisson Equation, are methods of image enhancement. The evaluation uses diverse test data set to evaluate different environmental conditions. Results of the evaluation show an increased number of successful marker detections in videos pre-processed by dehazing algorithms and evaluate the performance of each compared method. The Screened Poisson method performs slightly better to other methods across various tested environments, while Bright Channel Prior and Automatic Color Enhancement shows similarly positive results.
ISSN: 22969144
DOI: 10.3389/frobt.2018.00092
Rights: © Žuži, Čejka, Bruno, Skarlatos and Liarokapis.
Type: Article
Affiliation: Masaryk University 
University of Calabria 
Cyprus University of Technology 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΜέγεθοςΜορφότυπος
frobt-05-00092.pdfFulltext2.79 MBAdobe PDFΔείτε/ Ανοίξτε
CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

13
checked on 6 Νοε 2023

WEB OF SCIENCETM
Citations

6
Last Week
0
Last month
0
checked on 29 Οκτ 2023

Page view(s)

373
Last Week
0
Last month
0
checked on 6 Νοε 2024

Download(s)

91
checked on 6 Νοε 2024

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα