Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/1312
Τίτλος: Prediction of flat-plate collector performance parameters using artificial neural networks
Συγγραφείς: Kalogirou, Soteris A. 
Major Field of Science: Engineering and Technology
Field Category: Environmental Engineering
Λέξεις-κλειδιά: Artificial Neural Networks (ANN);Flat-plate solar collectors;Performance parameters prediction
Ημερομηνία Έκδοσης: Μαρ-2006
Πηγή: Solar Energy, 2006, Vol. 80, no. 3, pp. 248-259
Volume: 80
Issue: 3
Start page: 248
End page: 259
Περιοδικό: Solar Energy 
Περίληψη: The objective of this work is to use Artificial Neural Networks (ANN) for the prediction of the performance parameters of flat-plate solar collectors. ANNs have been used in diverse applications and they have been shown to be particularly useful in system modeling and system identification. Six ANN models have been developed for the prediction of the standard performance collector equation coefficients, both at wind and no-wind conditions, the incidence angle modifier coefficients at longitudinal and transverse directions, the collector time constant, the collector stagnation temperature and the collector heat capacity. Different networks were used due to the different nature of the input and output required in each case. The data used for the training, testing and validation of the networks were obtained from the LTS database. The results obtained when unknown data were presented to the networks are very satisfactory and indicate that the proposed method can successfully be used for the prediction of the performance parameters of flat-plate solar collectors. The advantages of this approach compared to the conventional testing methods are speed, simplicity, and the capacity of the network to learn from examples. This is done by embedding experiential knowledge in the network.
URI: https://hdl.handle.net/20.500.14279/1312
ISSN: 0038092X
DOI: 10.1016/j.solener.2005.03.003
Rights: © Elsevier 2005
Type: Article
Affiliation: Higher Technical Institute Cyprus 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

132
checked on 9 Νοε 2023

WEB OF SCIENCETM
Citations

108
Last Week
0
Last month
2
checked on 29 Οκτ 2023

Page view(s)

511
Last Week
0
Last month
0
checked on 21 Νοε 2024

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα