Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/1299
Τίτλος: Artificial neural networks for the prediction of the energy consumption of a passive solar building
Συγγραφείς: Kalogirou, Soteris A. 
Bojic, Milorad 
metadata.dc.contributor.other: Καλογήρου, Σωτήρης Α.
Major Field of Science: Engineering and Technology
Field Category: Mechanical Engineering
Λέξεις-κλειδιά: Artificial Neural Networks (ANN);Energy consumption
Ημερομηνία Έκδοσης: Μαΐ-2000
Πηγή: Energy, 2000, vol. 25, no. 5, pp. 479-491
Volume: 25
Issue: 5
Start page: 479
End page: 491
Περιοδικό: Energy 
Περίληψη: Artificial neural networks (ANNs) have been used for the prediction of the energy consumption of a passive solar building. The building structure consists of one room with an inclined roof. Two cases were investigated, an all insulated building and a building with one wall made completely of masonry and the other walls made partially of masonry and thermal insulation. The investigation was performed for two seasons: winter, for which the building with the masonry-only wall is facing south, and summer, for which the building with the masonry-only wall is facing north. The building's thermal behaviour was evaluated by using a dynamic thermal building model constructed on the basis of finite volumes and time marching. The energy consumption of the building depends on whether all walls have insulation, on the thickness of the masonry and insulation and on the season. Simulated data for a number of cases were used to train an artificial neural network (ANN) in order to generate a mapping between the above easily measurable inputs and the desired output, i.e., the building energy consumption in kWh. The simulated buildings had walls varying from 15 cm to 60 cm in thickness. The objective of this work is to produce another simulation program, using ANNs, to model the thermal behaviour of the building. A multilayer recurrent architecture using the standard back-propagation learning algorithm has been applied. The results obtained for the training set are such that they yield a coefficient of multiple determination (R2 value) equal to 0.9985. The network was used subsequently for predictions of the energy consumption for cases other than the ones used for training. The coefficient of multiple determination obtained in this case was equal to 0.9991, which is very satisfactory. The ANN model proved to be much faster than the dynamic simulation programs.
URI: https://hdl.handle.net/20.500.14279/1299
ISSN: 03605442
DOI: 10.1016/S0360-5442(99)00086-9
Rights: © Elsevier
Type: Article
Affiliation: Higher Technical Institute Cyprus 
University of Kragujevac 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

CORE Recommender
Sorry the service is unavailable at the moment. Please try again later.
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

402
checked on 8 Νοε 2023

WEB OF SCIENCETM
Citations

335
Last Week
1
Last month
1
checked on 17 Οκτ 2023

Page view(s)

613
Last Week
18
Last month
2
checked on 23 Φεβ 2025

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα